Recent results using lattice QCD simulations

Constantia Alexandrou University of Cyprus and The Cyprus Institute

XLV International Symposium on Multiparticle Dynamics Wildbad Kreuth, Germany

Outline

- Introduction
 - Computer and algorithmic developments
 - Hadron spectrum
 - Hyperons and Charmed baryons
- 2 Hadron structure
 - Nucleon scalar, axial and tensor charges
 - Hyperon axial charges
 - Generalized Parton Distributions
 - Momentum fraction of the pion
 - Nucleon GPDs
- Nuclear Physics
- Finite temperature and density, g_μ -2, B-physics, resonances, rare decays, TMDs, \cdots (not covered)
- 5 Conclusions

Quantum ChromoDynamics (QCD)

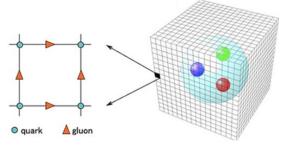
QCD-Gauge theory of the strong interaction

Lagrangian: formulated in terms of guarks and gluons

$$\mathcal{L}_{QCD} = -\frac{1}{4} F^{a}_{\mu\nu} F^{a\,\mu\nu} + \sum_{f=u,d,s,c,b,t} \bar{\psi}_f \left(i \gamma^{\mu} D_{\mu} - m_f \right) \psi_f$$

$$D_{\mu} = \partial_{\mu} - i g \frac{\lambda^a}{2} A^a_{\mu}$$

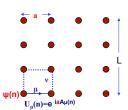
Heinrich Leutwyler


This "simple" Lagrangian produces the amazingly rich structure of strongly interacting matter in the universe.

Numerical simulation of QCD provides essential input for a wide class of complex strong interaction phenomena → In this talk: Mostly results on nucleon structure.

Introduction of QCD on the lattice

QCD Lagrangian: formulated in terms of quarks and gluons


$$\mathcal{L}_{QCD} = -\frac{1}{4} F^{a}_{\mu\nu} F^{a\,\mu\nu} + \sum_{f=u,d,s,c,b,t} \bar{\psi}_{f} \left[i \gamma^{\mu} \left(\partial_{\mu} - i g A_{\mu} \right) - m_{f} \right] \psi_{f}$$

- Gauge invariant discretization of QCD on a space-time lattice
- Finite lattice spacing a provides an ultraviolet cutoff at π/a
- Lattice provides a non-perturbative regularization
 → "lattice regularization" well suited for an asymptotically free theory like QCD
- Theory described by a discrete action S: $S = S_G + S_F$ where $S_F = \sum_x \bar{\psi}(x)D\psi(x)$ \longrightarrow fermions can be integrated out of the path integral to yield $\det(D[U])$

Introduction of QCD on the lattice

Lattice QCD Lagrangian: formulated in terms of quarks and gluons

- For numerical evaluation:
 - Finite box $L^3 \times T$
 - Fermion degrees of freedom integrated out
 - Rotate into imaginary time most drastic operation
- Path integral over gauge fields:

Partition function: $Z = \int \mathcal{D}U_{\mu}(x) \prod_{f} det(D_{f}[U]) e^{-S_{G}[U]}$ with

f = u, d, s, c.

- ▶ Monte Carlo simulation to produce a representative ensemble of $\{U_{\mu}(x)\}$ using the largest supercomputers
- ► Computation of observables: $\langle \mathcal{O} \rangle = \sum_{\{U_{\mu}\}} \mathcal{O}(D_1^{-1}, U_{\mu})$ need inverse of Dirac matrix, typically of 10⁸ × 10⁸ dimensions

8.0 Pflop/s (10¹⁵ flop/s), biggest in Europe

Fermion actions

Observables:
$$\langle \mathcal{O} \rangle = \sum_{\{U_{\mu}\}} \mathit{O}(\mathit{D}^{-1}, U_{\mu})$$

Several $\mathcal{O}(a)$ -improved fermion actions, K. Jansen, Lattice 2008

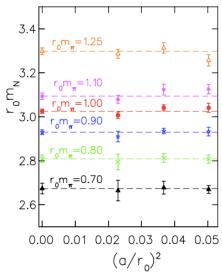
$$\langle O \rangle_{\rm cont} = \langle O \rangle_{\rm latt} + \mathcal{O}(a^2)$$

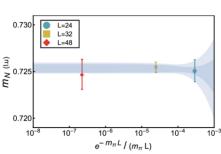
Action	Advantages	Disadvantages
Clover improved Wilson	computationally fast	breaks chiral symmetry needs operator improvement
Twisted mass (TM)	computationally fast automatic improvement	breaks chiral symmetry violation of isospin
Staggered	computational fast	four doublers (fourth root issue) complicated contractions
Domain wall (DW)	improved chiral symmetry	computationally demanding needs tuning
Overlap	exact chiral symmetry	computationally expensive

Several collaborations:

Clover QCDSF, BMW, ALPHA, CLS, PACS-CS, NPLQCD

Twisted mass ETMC

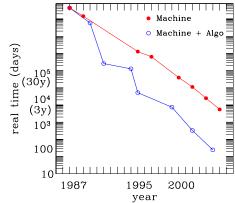

Staggered MILC


Domain wall RBC-UKQCD, JLQCD

Overlap JLQCD

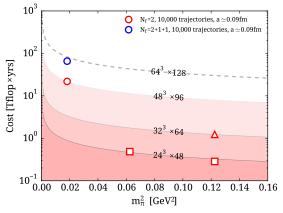
Systematic uncertainties

- Finite lattice spacing a take the continuum limit $a \rightarrow 0$
- Finite volume L take infinite volume limit $L \to \infty$



Volume dependence of nucleon mass for $m_\pi\sim 450$ MeV, $N_f=2+1$ Clover and $a\sim 0.12$ fm, K. Orginos *et al.* (NPLQCD), arXiv:1508.07583

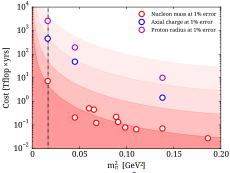
Computer and algorithmic development


Algorithm development has been decisive

Simulation on a $32^3 \times 64$ lattice, 5000 configurations

ETMC simulations with physical quark masses

European Twisted Mass Collaboration (ETMC): $N_f = 2$ and $N_f = 2 + 1 + 1$ twisted mass Wilson fermions


Simulation cost: $C_{
m sim} \propto \left(rac{300 {
m MeV}}{m_\pi}
ight)^{c_m} \left(rac{L}{3 {
m fm}}
ight)^{c_L} \left(rac{0.1 {
m fm}}{a}
ight)^{c_a}$

We find $c_L \sim 4.5$ and $c_m \sim 2$ for a fixed lattice spacing.

A. Abdel-Rehim et al. (ETMC), arXiv:1507.05068

Observables at physical quark mass

European Twisted Mass Collaboration (ETMC): $N_f = 2$ and $N_f = 2 + 1 + 1$ twisted mass Wilson fermions

Inversion cost (for a lattice of 643 x128)

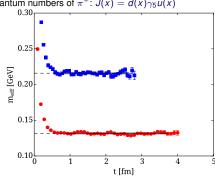
Methods to reduce further the statistical error are being developed

Hadron mass

First goal: reproduce the low-lying masses

Use Euclidean correlation functions:

$$G(\vec{q}, t_s) = \sum_{\vec{x}_s} e^{-i\vec{x}_s \cdot \vec{q}} \langle J(\vec{x}_s, t_s) J^{\dagger}(0) \rangle$$


$$= \sum_{n=0, \dots, \infty} A_n e^{-E_n(\vec{q})t_s} \xrightarrow{t_s \to \infty} A_0 e^{-E_0(\vec{q})t_s}$$

Interpolating field with the quantum numbers of π^+ : $J(x) = \bar{d}(x)\gamma_5 u(x)$

- Large Euclidean time evolution gives ground state for given quantum numbers

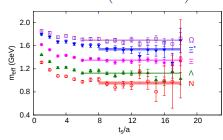
 enables determination of low-lying hadron properties

 $N_f = 2 + 1 + 1$ TM fermions at $m_{\pi} = 210$ MeV $N_f = 2$ TM plus clover fermions at physical pion mass

Hadron mass

First goal: reproduce the low-lying masses

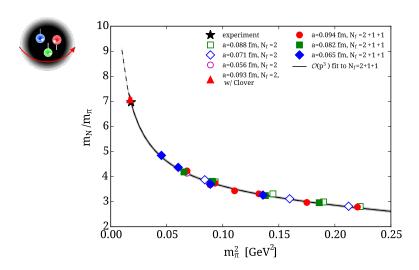
Use Euclidean correlation functions:


$$\begin{split} G(\vec{q},t_s) &= \sum_{\vec{x}_s} e^{-i\vec{x}_s \cdot \vec{q}} \langle J(\vec{x}_s,t_s) J^{\dagger}(0) \rangle \\ &= \sum_{n=0,\cdots,\infty} A_n e^{-E_n(\vec{q})t_s} \stackrel{t_s \to \infty}{\longrightarrow} A_0 e^{-E_0(\vec{q})t_s} \end{split}$$

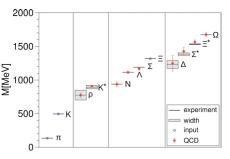
Interpolating field with the quantum numbers of p: $J(x) = \epsilon^{abc} \left(u^{a \top}(x) C \gamma_5 d^b(x) \right) u^c(x)$

- Large Euclidean time evolution gives ground state for given quantum numbers

 enables determination of low-lying hadron properties

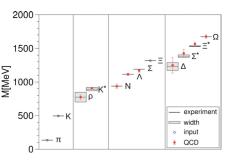


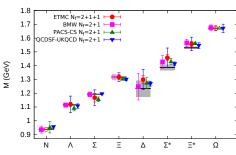
 $N_f=2$ TM plus clover fermions at physical pion mass Noise to signal increases with $t_s:\sim e^{(m_h-\frac{3}{2}m_\pi)t_s}$


Simulations with physical quark masses

A number of collaborations are producing simulations with physical values of the quark mass

European Twisted Mass Collaboration (ETMC): The nucleon, A. Abdel-Rehim et al. (ETMC) arXiv:1507.04936

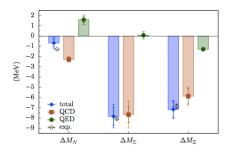

Hadron spectrum


 $N_f = 2 + 1$ Clover, BMW, Science 322 (2008)

Milestone calculation for lattice QCD ightarrow agreement with experiment is a success for QCD & LQCD

Hadron spectrum

 $N_f = 2 + 1$ Clover, BMW, Science 322 (2008)

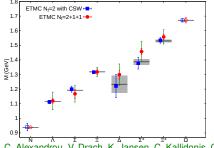


Several collaborations producing the hadron spectrum

Milestone calculation for lattice QCD ightarrow agreement with experiment is a success for QCD & LQCD

Isospin and electromagnetic mass splitting

RBC and BMW collaborations: Treat isospin and electromagnetic effects to LO

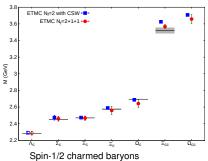


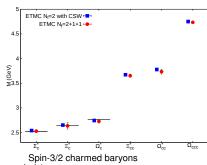
Baryon spectrum with mass splitting from BMW

- Nucleon mass: isospin and electromagnetic effects with opposite signs
- Physical splitting reproduced

Hyperons and Charmed baryons

- Spectrum using N_f = 2 + 1 + 1 for a range of pion masses from about 450 MeV to 210 MeV, 3 lattice spacings and different volumes
- Spectrum using an $N_f = 2$ ensemble with physical pion mass




- Continuum extrapolation using three lattice spacings, a = 0.094 fm, 0.082 fm and 0.065 fm
- Volume dependence no observable effects within our statistics
- Chiral extrapolation biggest systematic error
- Strange quark mass fixed using the Ω^- mass (open symbols)
- The lattice spacing was fixed using the nucleon mass (open symbols)

C. Alexandrou, V. Drach, K. Jansen, C. Kallidonis, G. Koutsou, Phys.Rev. D90 (2014) 7, 074501; C. Alexandrou et al. (ETMC) to appear

Hyperons and Charmed baryons

- Spectrum using N_f = 2 + 1 + 1 for a range of pion masses from about 450 MeV to 210 MeV, 3 lattice spacings and different volumes
- Spectrum using an $N_f = 2$ ensemble with physical pion mass

- The charm quark mass was fixed using the Λ_c mass (open symbols)
- C. Alexandrou, V. Drach, K. Jansen, C. Kallidonis, G. Koutsou, Phys.Rev. D90 (2014) 7, 074501; C. Alexandrou et al. (ETMC) to appear

Hadron structure

Evaluation of matrix elements

Evaluation of three-point functions:

$$G^{\mu\nu}(\Gamma,\vec{q},t_{s},t_{\mathrm{ins}}) = \sum_{\vec{x}_{S},\vec{x}_{\mathrm{ins}}} e^{i\vec{x}_{\mathrm{ins}}\cdot\vec{q}} \Gamma_{\beta\alpha} \left\langle J_{\alpha}(\vec{x}_{s},t_{s})\mathcal{O}_{\Gamma}^{\mu\nu}(\vec{x}_{\mathrm{ins}},t_{\mathrm{ins}}) \overline{J}_{\beta}(\vec{x}_{0},t_{0}) \right\rangle$$

$$Q_{\Gamma}$$

$$q = p' - p$$

$$(\mathbf{x}_{\mathrm{ins}},t_{\mathrm{ins}})$$

$$(\mathbf{x}_{0},t_{0})$$

$$(\vec{x}_{s},t_{s})$$

$$(\vec{x}_{s},t_{s})$$

$$(\vec{x}_{m},t_{\mathrm{ins}})$$

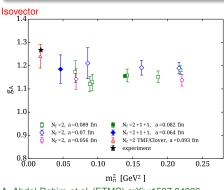
$$(\vec{x}_{0},t_{0})$$

Form ratio by dividing the three-point correlator by an appropriate combination of two-point functions:

$$R(t_s, t_{\text{ins}}, t_0) \xrightarrow[(t_s - t_{\text{ins}})\Delta \gg 1]{(t_s - t_{\text{ins}})\Delta \gg 1}} \mathcal{M}[1 + \dots e^{-\Delta(\mathbf{p})(t_{\text{ins}} - t_0)} + \dots e^{-\Delta(\mathbf{p}')(t_s - t_{\text{ins}})}]$$

- M the desired matrix element
- t_s , t_{ins} , t_0 the sink, insertion and source time-slices
- \bullet $\Delta(\mathbf{p})$ the energy gap with the first excited state

disconnected contribution


Nucleon charges

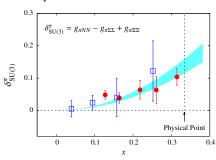
- axial-vector operator: $\mathcal{O}_A^a = \bar{\psi}(x)\gamma^\mu \gamma_5 \frac{\tau^a}{2} \psi(x)$
- tensor operator: $\mathcal{O}_T^a = \bar{\psi}(x)\sigma^{\mu\nu}\frac{\tau^a}{2}\psi(x)$
- scalar operator: $\mathcal{O}_S^a = \bar{\psi}(x) \frac{\tau^a}{2} \psi(x)$
- $\Longrightarrow \langle \textit{N}(\vec{p'})\mathcal{O}_{\Gamma}\textit{N}(\vec{p})
 angle |_{\textit{g}^2=0}$ yields $g_s, \ g_A, \ g_T$

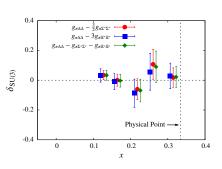
Nucleon charges: Axial-vector charge g_A

The good news:

Axial-vector FFs:
$$A_{\mu}^{3} = \bar{\psi}\gamma_{\mu}\gamma_{5}\frac{\tau^{3}}{2}\psi(x) \Longrightarrow \frac{1}{2}\bar{u}_{N}(\vec{p'})\left[\gamma_{\mu}\gamma_{5}G_{A}(q^{2}) + \frac{q^{\mu}\gamma_{5}}{2m}G_{p}(q^{2})\right]u_{N}(\vec{p})|_{q^{2}=0}$$
 \rightarrow yields $G_{A}(0) \equiv g_{A}$: i) well known experimentally, & ii) no quark loop contributions

A. Abdel-Rehim et al. (ETMC) arXiv:1507.04936


- q_A at the physical point using ~ 1500 measurements indicates agreement with the physical value → important to reduce error
- many results from other collaborations, e.g.
 - N_f = 2 + 1 Clover, J. R. Green et al., arXiv:1209.1687
 - N_f = 2 Clover, R.Hosley et al., arXiv:1302.2233
 - N_f = 2 Clover, S. Capitani et al. arXiv:1205.0180
 - N_f = 2 + 1 Clover, B. J. Owen et al., arXiv:1212.4668

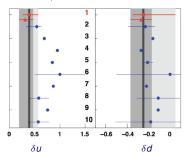

 - N_f = 2 + 1 + 1 Mixed action (HISQ/Clover), T. Bhattacharya et al.. arXiv:1306.5435

Hyperon axial charges

- Hyperon axial charges: $g_{\Lambda\Sigma} \sim 0.60$, $g_{\Sigma\Sigma}$, $g_{\Xi\Xi}$ not known experimentally
- Calculation equivalent to g_A of the nucleon: $\langle h|\bar{\psi}\gamma_{\mu}\gamma_5\psi|h\rangle|_{q^2=0}$ Efficient to calculate with fixed current method
- SU(3) breaking can be checked systematically

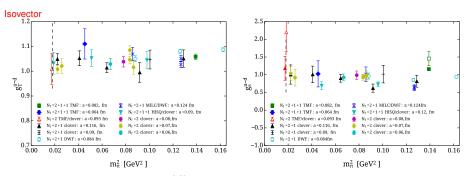
Preliminary

Also results from H.- W. Lin and K. Orginos, PRD 79, (2009)


Probe deviation:

- Octet: $\delta_{SU(3)} = g_A^N g_A^{\Sigma} + g_A^{\Xi}$ versus $x = (m_K^2 m_{\pi}^2)/4\pi^2 f_{\pi}^2$
- Decuplet: Three relations one can check

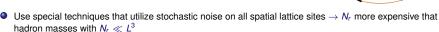
Nucleon charges: gs, gT


- scalar operator: $\mathcal{O}_S^a = \bar{\psi}(x) \frac{\tau^a}{2} \psi(x)$
- axial-vector operator: $\mathcal{O}_A^a = \bar{\psi}(x) \gamma^\mu \gamma_5 \frac{\tau^a}{2} \psi(x)$
- tensor operator: $\mathcal{O}_T^a = \bar{\psi}(x)\sigma^{\mu\nu}\frac{\tau^a}{2}\psi(x)$
- \implies extract from ratio: $\langle N(\vec{p'})\mathcal{O}_X N(\vec{p}) \rangle|_{q^2=0}$ to obtain g_s, g_A, g_T
- (i) isovector combination has no disconnect contributions; (ii) g_A well known experimentally, g_T to be measured at JLab

Planned experiment at JLab, SIDIS on ³He/Proton at 11 GeV:

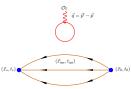
Experimental values: $\delta u = 0.39^{+0.18}_{-0.12}$ and $\delta d = -0.25^{+0.3}_{-0.1}$

Nucleon charges: gs, gT



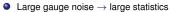
- Experimental value of $g_T \sim 0.54^{+0.30}_{-0.13}$ from global analysis of HERMES, COMPASS and Belle e^+e^- data, M. Anselmino *et al.* (2013).
 - New analysis of COMPASS and Belle data $:g_T^{u-d}=0.81(44)$, M. R. A. Courtoy, A. Bacchettad, M. Guagnellia, arXiv: 1503.03495
- For g_s increasing the sink-source time separation to ~ 1.5 fm is crucial

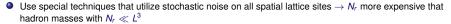
Disconnected quark loop contributions


Notoriously difficult

- $L(x_{\text{ins}}) = Tr \left[\Gamma G(x_{\text{ins}}; x_{\text{ins}})\right] \rangle \rightarrow$ need quark propagators from all \vec{x}_{ins} or L^3 more expensive as compared to the calculation of hadron masses
- Large gauge noise → large statistics

Reduce noise by increasing statistics
 ⇒ take advantage of graphics cards (GPUs) → need to develop special multi-GPU codes


C. A., M. Constantinou, S. Dinter, V. Drach, K. Hadijyiannakou, K. Jansen, G. Koutsou, A. Strelchenko, A. Vaquero arXiv:1211.0126 C.A., K. Hadijviannakou, G. Koutsou, A. O'Cais, A. Strelchenko, arXiv:1108.2473

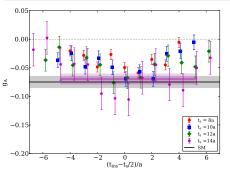


Disconnected quark loop contributions

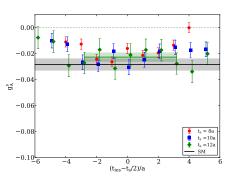
Notoriously difficult

• $L(x_{\text{ins}}) = Tr \left[\Gamma G(x_{\text{ins}}; x_{\text{ins}})\right] \rightarrow$ need quark propagators from all \vec{x}_{ins} or L^3 more expensive as compared to the calculation of hadron masses

A Fermi card

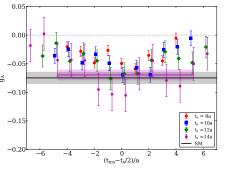

Cluster of 8 nodes of Fermi GPUs at the Cyprus Institute

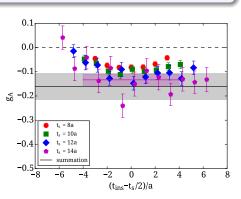
C. A., M. Constantinou, S. Dinter, V. Drach, K. Hadjiyiannakou, K. Jansen, G. Koutsou, A. Strelchenko, A. Vaquero arXiv:1211.0126 C.A., K. Hadjiyiannakou, G. Koutsou, A. O'Cais, A. Strelchenko, arXiv:1108.2473


 (\vec{x}_{inu}, t_{inu})

Nucleon axial and tensor charges)

• $N_f = 2 + 1 + 1$ twisted mass, a = 0.082 fm, $m_{\pi} = 373$ MeV


Disconnected isoscalar, agrees with Bali et al. (QCDSF), Phys.Rev.Lett. 108 (2012) 222001



Strange quark loop

Nucleon axial and tensor charges)

- $N_f = 2 + 1 + 1$ twisted mass, a = 0.082 fm, $m_{\pi} = 373$ MeV
- $N_f = 2$ twisted mass plus clover, a = 0.093 fm, $m_{\pi} = 133$ MeV

Disconnected isoscalar, agrees with Bali et al. (QCDSF), Phys.Rev.Lett. 108 (2012) 222001

- ~ 150 000 statistics using GPUs
- Small contamination from excited states
- Compute perturbatively the difference between isovector and isoscalar renormalization constants at two-loop, H. Panagopoulos et al.

Parton Distribution Functions

Generalized Parton Distributions

Factorization leads to matrix elements of local operators:

vector operator

$$\mathcal{O}_{V^a}^{\mu_1\cdots\mu_n}=\bar{\psi}(x)\gamma^{\{\mu_1\,i\stackrel{\leftrightarrow}{D}^{\mu_2}\ldots i\stackrel{\leftrightarrow}{D}^{\mu_n\}}\frac{\tau^a}{2}\psi(x)$$

axial-vector operator

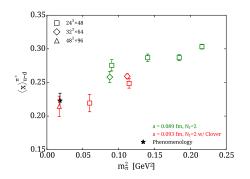
$$\mathcal{O}_{A^a}^{\mu_1\cdots\mu_n} = \bar{\psi}(x)\gamma^{\{\mu_1\,i\stackrel{\leftrightarrow}{D}\,\mu_2}\dots i\stackrel{\leftrightarrow}{D}^{\mu_n\}}\gamma_5\frac{\tau^a}{2}\psi(x)$$

tensor operator

$$\mathcal{O}_{\mathcal{T}^{a}}^{\mu_{1}\cdots\mu_{n}} = \bar{\psi}(x)\sigma^{\{\mu_{1},\mu_{2}\}}\stackrel{\leftrightarrow}{D}^{\mu_{3}}\cdots \stackrel{\rightarrow}{D}^{\mu_{n}\}}\frac{\tau^{a}}{2}\psi(x)$$

Special cases:

- no-derivative → nucleon form factors
- For Q² = 0 → parton distribution functions one-derivative → first moments e.g. average momentum fraction ⟨x⟩ Generalized form factor decomposition:

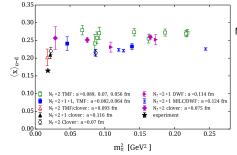

$$\langle \textit{N}(\textit{p}',\textit{s}')|\mathcal{O}_\textit{V3}^{\mu\nu}|\textit{N}(\textit{p},\textit{s})\rangle = \bar{\textit{u}}_\textit{N}(\textit{p}',\textit{s}') \left[\frac{\textit{A}_{20}(\textit{q}^2)\gamma^{\{\mu}\textit{P}^{\nu\}} + \textit{B}_{20}(\textit{q}^2)}{2m} \frac{i\sigma^{\{\mu\alpha}\textit{q}_{\alpha}\textit{P}^{\nu\}}}{2m} + \textit{C}_{20}(\textit{q}^2)\frac{\textit{q}^{\{\mu}\textit{q}^{\nu\}}}{m} \right] \frac{1}{2} \textit{u}_\textit{N}(\textit{p},\textit{s})$$

Nucleon spin
$$J^q=\frac{1}{2}\left[A_{20}(0)+B_{20}(0)\right]$$
 and $\langle x\rangle_q=A_{20}(0)$

Momentum fraction for the pion

What is the distribution of the pion momentum among the quarks in the pion?

 $\langle x \rangle$ obtained in the \overline{MS} scheme at $\mu = 2$ GeV.



- Agreement between the clover-improved and non-clover improved ensembles, A. Abdel-Rehim et al. 1507.05068
- No volume effects observed within our statistical errors
- \(\lambda \rangle _{u-d} \) agrees with the phenomenological value extracted from a next-to-leading order analysis from Fermilab E-615 pionic Drell-Yan data, K. Wijesooriya, P. Reimer, and R. Holt, Phys. Rev. C72, 065203 (2005), nucl-ex/0509012

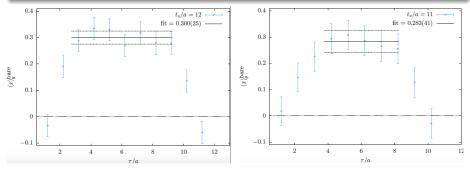
Momentum fraction and the nucleon spin

What is the distribution of the nucleon momentum among the nucleon constituents?

 $\langle x \rangle$ obtained in the \overline{MS} scheme at $\mu = 2$ GeV.

Near the physical point we show results from:

- N_f = 2 twisted mass plus clover-impoved from ETMC fermions, A. Abdel-Rehim et al. 1507.05068
- $N_f = 2 + 1$ clover fermions with 2-HEX smearing from LHPC, J. Green *et al.*, 1209.1687
- $ightharpoonup N_f = 2$ clover fermions, G. Bali et al., 1408.6850
- N_f = 2 clover fermions from QCDSF/UKQCD,
 D. Pleiter et al., 1101.2326


- $(x)_{u-d}$ approach physical value for bigger source-sink separations \to need an equivalent high statistics study
- Can provide a prediction for $\langle x \rangle_{\delta u \delta d}$

Experimental value:

\(\chi\chi_{II} = d\) from S. Alekhin et al. arXiv:1202.2281

Nucleon gluon moment

- $N_f = 2 + 1 + 1$ twisted mass, a = 0.082 fm, $m_{\pi} = 373$ MeV, $\sim 34,470$ statistics
- $N_f=2$ twisted mass plus clover, a=0.093 fm, $m_\pi=132$ MeV, $\sim 155,800$ statistics

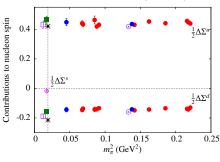
- Matrix element of the gluon operator $O_{\mu\nu} = -\text{Tr}[G_{\mu\rho}G_{\nu\rho}]$
- lacktriangledown We consider $\langle N|O_{44}-rac{1}{3}O_{jj}|N
 angle$ at zero momentum, which yields directly $\langle x
 angle_g$
- HYP-smearing to reduce noise
- Perturbative renormalization
- lacktriangled Preliminary value: $\langle x \rangle_g = 0.282(39)$ for the physical ensemble in $\overline{\rm MS}$ at $\mu = 2~{\rm GeV}$

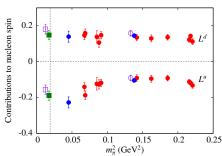

Where is the nucleon spin?

Spin sum:
$$\frac{1}{2} = \sum_q \underbrace{\left(\frac{1}{2}\Delta\Sigma^q + L^q\right)}_{J^q} + J^G$$

$$J^q = A^q_{20}(0) + B^q_{20}(0) \text{ and } \Delta\Sigma^q = g^q_4$$

Disconnected contribution using $\mathcal{O}(150,000)$ statistics for $m_{\pi}=373$ MeV and for $m_{\pi}=133$ MeV


 \implies Total spin for u-quarks $J^u \stackrel{\sim}{<} 0.25$ and for d-quark $J^d \sim 0$

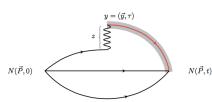

Where is the nucleon spin?

Spin sum:
$$\frac{1}{2}=\sum_q \underbrace{\left(\frac{1}{2}\Delta\Sigma^q+L^q\right)}_{J^q}+J^G$$
 $J^q=A^q_{20}(0)+B^q_{20}(0)$ and $\Delta\Sigma^q=g^q_{4}$

Disconnected contribution using $\mathcal{O}(150,000)$ statistics for $m_\pi=373$ MeV and for $m_\pi=133$ MeV

- \bullet $\Delta\Sigma^{u,d}$ consistent with experimental values
- \bullet $L^d \sim -L^u$

Direct evaluation of parton distribution functions - an exploratory study

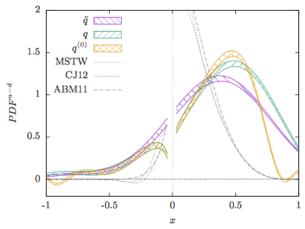

$$\tilde{a}_n(x,\Lambda,P_3) = \int_{-\infty}^{+\infty} dx \, x^{n-1} \, \tilde{q}(x,\Lambda,P_3) \rangle,$$

$$\tilde{q}(x,\Lambda,P_3) = \int_{-\infty}^{+\infty} \frac{dz}{4\pi} e^{-izxP_3} \underbrace{\langle P|\bar{\psi}(z,0)\rangle \gamma_3 \ W(z)\psi(0,0)|P\rangle}_{h(P_3,z)}$$

is the quasi-distribution defined by X. Ji Phys.Rev.Lett. 110 (2013) 262002, arXiv:1305.1539

 $h(P_3, z)$ can be computed in lattice QCD

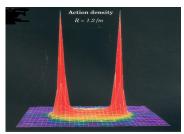
- We use our test ensemble with $m_{\pi}=373~{\rm MeV}$
- Perform HYP-smearing on the gauge links
- Use the stochastic all-to-all propagator in the three-point function
- Extract quasi-distribution for $\frac{2\pi}{L}$, $\frac{4\pi}{L}$, $\frac{6\pi}{L}$


Comments

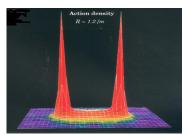
Our starting point is

$$q(x,\mu) = \tilde{q}(x,\Lambda,P_3) - \frac{\alpha_s}{2\pi} \tilde{q}(x,\Lambda,P_3) \delta Z_F^{(1)}\left(\frac{\mu}{P_3},\frac{\Lambda}{P_3}\right) - \frac{\alpha_s}{2\pi} \int_{-1}^1 \frac{dy}{y} Z^{(1)}\left(\frac{x}{y},\frac{\mu}{P_3},\frac{\Lambda}{P_3}\right) \tilde{q}(y,\Lambda,P_3) + \mathcal{O}(\alpha_s^2)$$

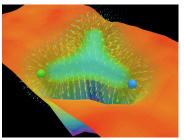
- The calculation of the leading UV divergences in q̃ in PT are done keeping P₃ fixed while taking Λ → ∞ (in contrast to first taking P₃ → ∞ for the renormalization of q)
- We still do not have a renormalization procedure
 → identify the UV regulator as μ for q and as Λ for the case of the quasi-distribution.
- The dependence on the UV regulator Λ will be translated, in the end, into a renormalization scale μ after proper renormalization
- Single pole terms cancel when combining the vertex and wave function corrections, and double poles are reduced to a single pole that are taken care via the principal value prescription
- A divergent term remains in $\delta Z^{(1)}$ that depends on the cut-off x_c


Preliminary results

Results for 5-HYP steps, $P_3 = 4\pi/L$

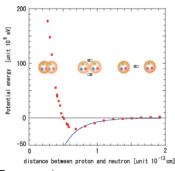

Renormalization still has to be done to remove the cut-off x_c and the remaining divergent term $\sim \ln(x_c^2-1)$

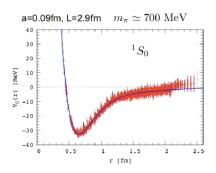
From the $q\bar{q}$ potential to the determination of nuclear forces



K. Schilling, G. Bali and C. Schlichter, 1995

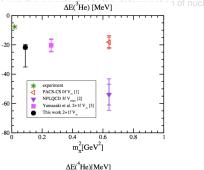
From the $q\bar{q}$ potential to the determination of nuclear forces

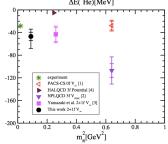



K. Schilling, G. Bali and C. Schlichter, 1995

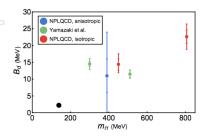
A.I. Signal, F.R.P. Bissey and D. Leinweber, arXiv:0806.0644

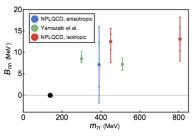
From the $q\bar{q}$ potential to the determination of nuclear forces





Two approaches:


- Determine N-N energy as a function of $L \rightarrow$ extract phase shift NPQCD
- Detemine BS wave function $\langle 0|N(\vec{r})N(\vec{0})|NN\rangle$ and exact asymptotically the phase shift HALQCD
- → study nuclear physics, neutron stars, ...


Only at the begining...

T.Yamazaki, K. Ishikawa, Y. Kuramashi, A. Ukawa, 1502.04182

Deuteron and nn (1S_0 channel) binding energy, κ . Orginos et al. 1508.07583

Only at the begining...

Conclusions

Future Perspectives

- Confirm g_A , $\langle x \rangle_{u-d}$, etc, at the physical point using $N_f = 2$ and $N_f = 2 + 1 + 1$
- Provide predictions for g_s , g_T , tensor moment, sigma-terms, etc.
- Compute hadron GPDs using new techniques
- Provide input on the proton radius using position methods
- Develop methods for resonances
- Ab initio Nuclear Physics
- ...

European Twisted Mass Collaboration

European Twisted Mass Collaboration (ETMC)

Cyprus (Univ. of Cyprus, Cyprus Inst.), France (Orsay, Grenoble), Germany (Berlin/Zeuthen, Bonn, Frankfurt, Hamburg, Münster), Italy (Rome I, II, III, Trento), Netherlands (Groningen), Poland (Poznan), Spain (Valencia), Switzerland (Bern), UK (Liverpool)

Collaborators:

A. Abdel-Rehim, K. Cichy, M. Constantinou, V. Drach, E. Garcia Ramos, K. Hadjiyiannakou, K.Jansen Ch. Kallidonis, G. Koutsou, K. Ottnad, M. Petschlies, F. Steffens, A. Strelchenko, A. Vaquero, C. Wiese

Conference on Electromagnetic Interactions with Nucleons and Nuclei, 1-7 Nov. 2015

ORGANISERS

Conference:

Constantia Alexandrou (Chair) Richard G. Milner (Vice-Chair)

Workshops: Zein-Eddine Meziani (Chair) Marc Vanderhaeghen (Co-chair)

Dre-conference Or Han and Charlotte Van Hu

IMPORTANT DEADLINE

15TH SEP 2015

- · Registration
- · Abstract submission

CONTACT DETAILS

Academic Matters Prof. Constantia Alexandrou alexand@ucy.ac.cy © +357 22892829

Organisational Matters Easy Conferences ☑ info@easyconferences.org © +357 22591900

EINN2015

11th European Research Conference on

"Electromagnetic Interactions with Nucleons and Nuclei" 1-7 November 2015

OVERVIEW

Pre-conference: 1-2 November 2015

Annabelle Hotel, Paphos, Cyprus

- Frontiers and Careers in Photonuclear Physics skill development and talks for students
- Introductory talks

Main conference: 3-7 November 2015

Conference Topics

- · Nucleon form factors and low-energy hadron structure Partonic structure of nucleons and nuclei
- Precision electroweak physics and new physics searches Meson structure
- Baryon and light-meson spectroscopy · Nuclear effects and few-body physics

Parallel Workshops

1. Spin structure of nucleons and nuclei from low to large energy scales Spectroscopy - status and future prospects

Poster Session

We invite you to submit abstracts for talks at the workshops and for the poster session. Contributions not selected for talks will be given the option of a poster presentation.

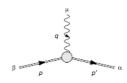
INTERNATIONAL

ADVISORY COMMITTEE

Misuro Anselmino (University of Torino, Italy) Sinva Acki (University of Kyoto, Japan) Reinhard Beck (University of Bonn, Germany) Andrea Bressen (CERN, Switzerland) Annalisa D'Annalo (University of Rome-II, Italy) .

- Achim Denig (University of Mainz, Germany) Hutete Envo (Riken, Japan) Haiven Geo (Duke, USA)
- Michel Garcon (Saday, France) Papia Gianotti (Frascati, Italy) Michel Guidal (Orsay, France) Barry Holstein (University of Massachusetts, USA) . Marc Vanderhaeghen (Mainz University, Germany)
- Karl Jansen (DESY, NIC. Germany) Xiangdong Ji (University of Maryland, USA) Max Klein (DESY, Germany) Kartheinz Langarke (GSI, Germany) Gerhard Mallot (CERN, Switzerland) William Marciano (BNL USA)
 - Plet Mulders (VU University: The Netherlands) Costas Papanicolas (The Cyprus Institute, Cyprus) . Bernard Pire (Ecole Polytechnique, France) Xiaoyan Shen (IHEP, China)

Toshimi Suda (Tohoku University, Japan)

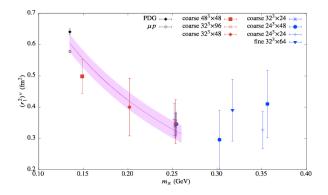


Join us! Paphos, Cyprus

Backup slides

Electromagnetic form factors

$$\langle \textit{N}(\textit{p}',\textit{s}')|\textit{j}^{\mu}(0)|\textit{N}(\textit{p},\textit{s})\rangle = \bar{\textit{u}}_\textit{N}(\textit{p}',\textit{s}')\left[\gamma^{\mu}\textit{F}_{1}(\textit{q}^{2}) + \frac{\textit{i}\sigma^{\mu\nu}\textit{q}_{\nu}}{2m}\textit{F}_{2}(\textit{q}^{2})\right]\textit{u}_\textit{N}(\textit{p},\textit{s})$$



- Proton radius extracted from muonic hydrogen is 7.7 σ different from the one extracted from electron scattering, R. Pohl et al., Nature 466 (2010) 213
- Muonic measurement is ten times more accurate

Dirac and Pauli radii

Dipole fits:
$$\frac{G_0}{(1+Q^2/M^2)^2} \Rightarrow \langle r_i^2 \rangle = -\frac{6}{F_i} \frac{dF_i}{dQ^2} |_{Q^2=0} = \frac{12}{M_i^2}$$

Need better accuracy at the physical point

Using results from summation method, J. M. Green et al., 1404.4029

Isovector charge radius $r_{E,iso}$

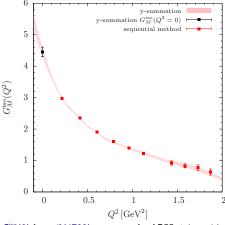
Consider isovector rms charge radius of the nucleon:

$$r_{E,\text{iso}}^2 = -6 \frac{d}{dQ^2} G_E(Q^2) \Big|_{Q^2=0}$$
.

Start from most simple relation for G_E(Q²):

$$\Pi_0\left(\vec{q},\Gamma_0
ight) = -\sqrt{rac{E_N + m_N}{2E_N}}G_E\left(Q^2
ight) \,.$$

Position methods


- Avoid model dependence-fits
- lacktriangle Application to Sachs form factors ightarrow nucleon isovector magnetic moment $G_M^{\mathrm{iso}}(0)$
- Isovector rms charge radius of the nucleon
- Neutron electric dipole moment

As a first step we calculated $G_M(0)$ (equivalently $F_2(0)$) at $m_\pi=373$ MeV.

C.A., G. Koutsou, K. Ottnad, M. Petschlies, PoS(Lattice2014), 144


Magnetic moment $G_M^{iso}(0)$

- In principle, values at larger Q² have very little influence
- Value for $G_M^{\rm iso} = 4.45(15)_{\rm stat}$ larger than result from dipole fit 3.99(9)_{stat}
- Closer to exp. value (4.71)

 $\emph{G}_{\emph{M}}^{\mathrm{iso}}(0)$ from $\mathcal{O}(4700)$ gauge confs of B55; $\emph{t}_{\textrm{s}}/\emph{a}=14$

Results for $r_E^{\rm iso}$

- We use an ETMC 48³ × 96, N_f = 2 ensemble with **physical pion mass**
- Data shown in plot are for O(1400) confs
- t_s/a = 14 compatible with experiment!
- Unfortunately errors are still not small enough to distinguish the two experimental values