
EPJ Web of Conferences will be set by the publisher
DOI: will be set by the publisher
c© Owned by the authors, published by EDP Sciences, 2015

Searching for a hidden sector in multiparticle production at LHC

Miguel-Angel Sanchis-Lozano1,a, Edward Sarkisyan-Grinbaum2,3,b, Salvador Moreno-Picot4,c

1Departamento de Física Teórica, IFIC, CSIC-University of Valencia, 46100 Burjassot, Spain
2Department of Physics, The University of Texas at Arlington, Arlington, TX 76019, USA
3Department of Physics, CERN, 1211 Geneva 23, Switzerland
4Departamento de Informática, ETSE, University of Valencia, 46100 Burjassot, Spain

Abstract. A hidden sector beyond the Standard Model can show up in multiparticle pro-
duction altering inclusive correlations and factorial cumulants of multiplicity distribu-
tions. In this report such a study is advocated with a specialemphasis on the searches at
LHC.

1 Introduction

Most signatures of New Physics in colliders are expected to be found in hard events, on the transverse
plane with respect to the beams’ direction (i.e. emitting particles with high transverse momentump⊥),
where background is much reduced. In this report, however, we focus on rather diffuse soft signals
in pp inelastic interactions, though expectedly tagged by hard decay products and appropriate cuts on
events. For example, a non-standard state of matter from a Hidden Sector (HS) [1] might alter particle
correlations [2–4] which can be measured to a large accuracyat the LHC.

Hadron interactions at high energy are usually considered as resulting from collisions of their
constituent partons, likely dominated by pairwise parton interactions. In this work we study the
effects of a new physics contribution on the conventional parton cascade. To this end, we extend the
phenonemological approach of the Independent Pair Parton Interaction (IPPI) model [5, 6] including
an extra step of a hypothetical new stage of matter associated with HS.

1.1 Factorial moments of multiplicity correlations

The study of inclusive particle correlations in multiparticle production can be performed by analyzing
n-particle correlation functions and/or normalised factorial moments of multiplicity distributions [7–
9]. Here we focus on the latter.

The normalized factorial moments of rankq = 2, 3, . . . , are defined as

Fq =

∑
n P(n) n(n − 1) · · · (n − q + 1)

(
∑

n P(n) n)2
, (1)
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Table 1. Probability distribution of the number of active pairs in proton-proton collisions for different TeV
energies according to the IPPI model.

√
s w1 w2 w3 w4 w5 w6 w7

1.8 TeV 0.519 0.269 0.140 0.072 0.0 0.0 0.0
7.0 TeV 0.504 0.254 0.128 0.065 0.033 0.016 0.0
13 TeV 0.5020 0.2520 0.1265 0.0635 0.0319 0.0160 0.0080

whereP(n) denotes the probability forn final-state particles (charged hadrons).
The factorial moments represent any correlation between the emitted particles in events. To extract

the genuineq-particle correlations, not reducible to the product of thelower-order correlations, one
uses the normalised cumulant functions, or cumulants, defined as

Kq = Fq −
q−1∑

r=1

(q − 1)!
r!(q − r − 1)!

Kq−rFr . (2)

SinceFq and|Kq| grow rapidly as the rankq increases, it is convenient to consider the ratio

Hq =
Kq

Fq
, (3)

Factorial moments and cumulants have been extensively applied to the analysis of multihadron dy-
namics in different types of collisions, frome+e− to nucleus-nucleus interactions, in a broad range of
energies [7–9]. In particular, normalizedHq moments are extremely sensitive to the details of mul-
tiplicity distributions [10] and can be used to distinguishbetween different multiparticle production
models and eventually the contribution of a HS as advocated in this paper.

2 Multiparticle production as a multi-step cascade

The IPPI model [5, 6] was proposed in order reproduce the moments of multiplicity distributions in
pp collisions at high energy with minimum adjustable parameters. The IPPI picture corresponds to
a simplified 2-step scenario: parton binary collisions become seeds of independent cascades which
hadronize (e.g. via string fragmentation) to the final-state multiparticlestate.

Moreover, it is assumed that each pair parton interaction gives rise to a negative binomial distri-
bution (NBD), while the total distribution is ultimately described by means of the weighted sum:

P(2)(n) =
jmax∑

j=1

w j

∑

ni

j∏

i=1

PNBD(ni,m
(1)
, k(1)) =

jmax∑

j=1

w j PNBD(n; jm(1)
, jk(1)) , (4)

wherew j denotes the probability for aj-pair interaction,m(1) andk(1) correspond to the mean multi-
plicity and dispersion for a single pair interaction, respectively. Note that no new adjustable parame-
ters appear in Eq.(4) besides the distribution forj binary parton interactions which can be evaluated
if some model is adopted [11, 12].

In the IPPI, the probability forj binary parton interactions per event is simply estimated asw j =

w
j
1, wherew1 refers to a single pair, with the normalization condition

∑ jmax

j=1 w j = 1. In Table 1 we

show the values ofw j up towmax = 7, corresponding topp collisions at the c.m. energy
√

s of 13 TeV
taken from [6].
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Figure 1. H(2)
q moments up toq = 16 in pp̄ collisions at 1.8 TeV obtained in this work using expressions for

a 2-step cascade and the same parameters as in [5, 6]. Very good agreement is found with their results and
experimental data [17], shown by circles with error bars.

2.1 Two-step cascade

Let us rewrite Eq.(4) for arbitrary particle production distributions and sources:

P(2)(n) =
∑

Ns

P(Ns)
∑

ni

Ns∏

i=1

P(1)(ni) . (5)

Here n and Ns denote the number of (charged) particles and sources, respectively. Note that the
number of sourcesNs in Eq.(5) corresponds to the number of parton pair collisions j in Eq.(4). In the
notation used here,P(Ns) stands now for the distribution of (fragmenting string) sources, equivalent
to the parton pair interaction distributionw j. Correspondingly, the average multiplicity can be written
as〈n〉 = 〈Ns〉 m(1) according to a 2-step description of multiparticle production.

On the other hand, the authors of [5, 6] benefit from a dramaticreduction of free parameters when
assuming a weighted superposition of NBDs with shifted parameters, as can be seen in Eq.(4). In
addition, sincem(1) should be the same for any value of the rankq, only k(1) remains a free parameter
(wmax was determined using a particular model).

In order to make a comparison of the results of the current study and those from [5, 6], below we
assume that allP(1)(ni) are NBDs. Moreover,P(Ns) andw j distributions can be formally identified.

The computation of high rankF(2)
q moments becomes extremely involved at largeq. Therefore,

we have written a Prolog code [13] which provides the expressionsF(p)
q for any value of the rankq

and any number of stepsp in the cascadeF(p)
q , depending on the computer capacity available.

As shown below, we are able to reproduce (up to the percent level) theH(2)
q moments1 using the

same values and assumptions as in Refs. [5, 6]. This accordance suggests to proceed further in the
approach given here by incorporating a new step in the partoncascade following the mIPPI scheme.

1The superindexp in H(p)
q indicates the number of steps in the cascade: a two-step conventional cacade withp = 2, and the

three-step cascade withp = 3 once a HS is included.
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Figure 2. Predictions forH(p)
q moments as a function of the rankq for pp collisions at

√
s = 13 TeV. The circles

correspond to a conventional 2-step cascade (p = 2) from extrapolation at lower energies using the IPPI model.
The triangles and the squares correspond to a 3-step cascade(p = 3) using the mIPPI model (this work) with
〈Nh〉 = 2 and〈Nh〉 = 10, respectively. A different pattern in the amplitude of the oscillations at highq values can
be clearly observed.

2.2 Three-step cascade

Let us now include an extra step in the cascade to simulate a hypothetical new stage of matter associ-
ated to a HS. The resulting multiplicity in a 3-step process should obey the following distribution:

P(3)(n) =
∑

Ns

P(Ns)
∑

n j

Ns∏

j=1

P(2)(n j) ; P(2)(n) =
∑

Nh

P(Nh)
∑

ni

Nh∏

i=1

P(1)(ni) , (6)

with Nh denoting the number of active hidden sources in a collision.In what follows, for the sake of
simplicity we assume thatP(Nh) follows a Poisson distribution,i.e. independent production of hidden
sources resulting from binary parton interactions.

In other words, the probability distribution of parton interactions remains the same as in the con-
ventional cascade (being already adjusted to reproduce experimental data inpp collisions) while one
adds another step subsequent to the initial binary parton interaction.

3 Hq-moment oscillations as a function of the rank q

QCD next-to-leading order calculations [14, 15] predict that the ratiosHq defined in Eq.(3) oscillate
as a function of the rankq, crossing theq-axis and becoming negative withqmin ≈ 5 at LHC energies,
shifting to larger values at higher energies. This prediction has been tested against experimental data
and found to be observed not only ine+e− collisions but also in a variety of colliding particles and
energies, includingpp, pA andAA collisions [16].

In Fig. 1 we plot the values of theH(2)
q moments (q = 2 to 16) for

√
s = 1.8 TeV multiplicity

data, obtained through Eqs.(2) and (3) from the expressionsof F(2)
q (a 2-step cascade). We fix the

parameters for the plot alike it is done in Ref. [5],i.e., assuming NBDs for all binary parton collisions
with k(1) = 4.4, andP(Ns) (equivalent to thew distribution) from Table 1.
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Figure 3. Values of ln|H(p)
q | at

√
s = 13 TeV versusq for a 2-step scenario (p = 2, circles) and a 3-step scenario

(p = 3) with 〈Nh〉 = 2 (triangles) and〈Nh〉 = 10 (squares). Solid, dashed and dot-dashed lines correspond
to parabolic fits, respectively. Left panel: superpositionof NBDs with different reference values for theirk
parameter (see [4]). Right panel:P(Ns) incorporates the values of Table 1 (not the NBD case). Notice that there
are no oscillations whenall the distributions of the convolution are of the NBD type.

One can see the two minima in the Fig. 1. This oscillatory pattern is due to the fact that the
probability distribution for the number of sourcesP(Ns) (equivalently, the distribution for the number
of parton pair collisions) doesnot follow a NBD. In case all the distributions are NBD, the resulting
distribution turns out to be of the NBD type too and no oscillation pattern forH(2)

q shows up.
The overall good agreement with the results of Refs. [5, 6] and experimental data [17] suggests

the further introduction of a new step in the cascade to be interpreted as a HS, thereby studying the
eventual variation of the crossing points/minima and the amplitude of theHq oscillations.

4 HS-cascade versus a conventional cascade

In Fig. 2 three sets of points corresponding to different scenarios atpp collisions at
√

s = 13 TeV are
shown. The circles correspond to a conventional cascade, while the triangles and squares correspond
to an extra step in the mIPPI model setting〈Nh〉 = 2 and〈Nh〉 = 10, respectively. One can see that the
crossing point (and minimum) moves by about one unit to the left for the 〈Nh〉 = 10, and by the same
amount to the right for〈Nh〉 = 2 compared to the case of a conventional cascade. Such an altered
behaviour could become a hint of a HS affecting the parton evolution in multiparticle production,
deserving a more detailed study.

Next we examine the amplitude of theHq oscillations as a function of the rankq, and its depen-
dence on the parameters used in the mIPPI model as can be seen from in Fig. 2.

Depending on the number of hidden sources two different behaviours of the oscillation pattern of
H(3)

q moments can be distinguished:

• For a small number of hidden sources, the oscillation amplitude becomes appreciably dumped for
high q values as compared to a conventional (2-step) cascade.

• For a large number of hidden sources, the oscillation amplitude is considerably larger for highq
values as compared to a conventional (2-step) cascade.

These conclusions are indeed confirmed in Fig. 3 where the values of ln|Hq| are plotted against
q for different scenarios depending on the type of the distributions used. The calculated points are
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shown together with the parabolic fits to them. One can see that the behaviour of the fitted curves is
very different for different scenarios especially at largeq values.

The fitted curves pass through the points in the left panel, whereas the points scatter around the
curves in the right panel. Hence no oscillations appear whenever all distributions in the superposition
of Eqs.(6), includingP(Ns), are of the NBD type. This behaviour can be easily understood in the
mIPPI model inasmuch the convolution of NBDs in Eq.(6) leadsagain to a NBD. Conversely, the
oscillation pattern in the right panel emerges as a consequence ofP(Ns) not being a NBD.

5 Summary

Using the modified Independent Parton Pair Interaction we have studied the effect of a HS on the
cumulant-to-factorial moment ratioHq of the multiplicity distributions of final-state particlesin pp
collisions at the LHC. We conclude that a large (small) number of hidden sources would lead to an
enhancement (softening) of the oscillation amplitude at high q values. Moreover, the crossing of the
q-axis and the minimum of theHq-moments interpolating curve shifts to smaller (larger)q values for
a large (few) number of hidden sources.
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