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MOTIVATION
v  Bulk observables - mean multiplicity and rapidity densities - control 

parameters of the formation and evolution of the collision initial 
state 

v  Extensively studied in heavy-ion collisions at RHIC  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state 

v  Extensively studied in heavy-ion collisions at RHIC

v  Similarities with e+e- and pp data: 
    universality in multihadron production

v  pp multiplicity data to be scaled 

v  pp midrapidity density does not 
     obey a similar scaling 

Not the same scaling for both 
variables and for different types of 
Interactions
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Energy Scaling vs. Types of Collisions
v  e+e- (structureless particles) annihilation - the total interaction energy 

is deposited in the initial state 

v  pp (superposition of three pairs of constituents) collision - only the 
energy of the interacting single quark pair is deposited in the initial 
state 

v  Both multiplicity and midrapidity density should be similar in pp at 
c.m. energy √spp and e+e- at c.m. energy √see≈ √spp/3 

v  Head-on heavy ion collisions: all three quarks participate nearly 
simultaneously and deposit their energy coherently into initial state

v  Both multiplicity and midrapidity density should be similar in pp 
at c.m. energy √spp and head-on AA at c.m. energy √sNN ≈ √spp/3 

E.	  Sarkisyan	  &	  A.	  Sakharov	  (2004)	  :	  dissipaFng	  	  energy	  parFcipants	  



03/10/15 ISMD2015 6	  

Hydrodynamics of  Collisions
Ø  Two head-on colliding Lorentz-contracted particles stop within 

the overlapped zone    
v Formation of fully thermalized initial state at the collision moment
v  The decay (expansion) of the initial state is governed by relativistic     
     hydrodynamics - Landau model (1953)
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The production of secondaries  is defined by the energy deposited     
   into the  initial state
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Hydrodynamics & Effective Energy 

From Landau Hydrodynamics 
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Landau Hydrodynamics + Constituent Quark approach:

2Nch

Npart
= Npp

ch

⇢(0)

⇢pp(0)

s
LNN

Lpp
,

2Nch

Npart
= Npp

ch

⇢(0)

⇢pp(0)

s

1� 2ln3

ln(4.5
p
sNN/mp)

,
p
sNN =

p
spp/3.



03/10/15 ISMD2015 10	  

Hydrodynamics & Effective Energy 

From Landau Hydrodynamics 

L = ln

p
s

2m

Landau Hydrodynamics + Constituent Quark approach:

2Nch

Npart
= Npp

ch

⇢(0)

⇢pp(0)

s
LNN

Lpp
,

2Nch

Npart
= Npp

ch

⇢(0)

⇢pp(0)

s

1� 2ln3

ln(4.5
p
sNN/mp)

,
p
sNN =

p
spp/3.

Effective Energy:
Effective energy can be calculated as following:

Here α is centrality percentile. 
e.g. For 0-5% central collision α = 0.025
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Pseudorapidity and ET Midrapidity Densities
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v  CQM+Landau calculations 
have a very good agreement 
with data

v  Effective energy dissipation well  
explains the centrality behaviour

v  Similarity in the data from 
peripheral to the most central 
collisions: all the data follow the 
same (effective) energy behavior

v  The combined data indicate 
possible transition  to a new 
regime at √sNN=0.5-1.0 TeV

Effective energy approach provides a good description of both the pseudorapidity and 
transverse energy densities at midrapidity in heavy-ion collisions

	  	  	  ANM,	  R	  Sahoo,	  EKG	  Sarkisyan,	  AS	  Sakharov,	  Eur.Phys.J.	  C	  74	  (2014)	  11,	  3147	  
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v  Hybrid and power-law functions provide good 
fits for all available AA data and are almost 
indistinguishable up to LHC energy

v  LHC data departs from log2-polynomial fit at 
√sNN about 1 TeV, indicates a possible 
transition to a new regime in heavy-ion 
collisions 

Mean Multiplicity Energy Dependence
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v  The dotted l ines represent the 
calculations from the effective-
energy approach

v  The calculations, driven by the 
centrality-defined effective c.m. energy 
εNN, well reproduce the LHC data

v  RHIC da ta show a s ign i fican t 
difference with the calculations for 
peripheral collisions
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Mean Multiplicity Centrality Dependence
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v  Calculations for high-central collisions, are in very good agreement with the 
measurements. 

v  At LHC energy, pp measurements from the three different experiments are 
used and shown to reproduce AA data
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Pseudorapidity Distributions: 
Most Central Collisions



v  Calculations for non-central collisions, agree well with the measurements in the 
central η region while fall below the data outside this region  

v  Within the effective-energy approach, one expects the limiting fragmentation 
scaling of ρ(η) (fragmentation area of ρ(η) independence of collision energy in 
the beam/target rest frame) measured at √sNN to be similar to that of the 
calculated distribution but taken at the effective energy εNN , i.e.  η → η − 
yeff  , where yeff  = ln(εNN /mp)
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Pseudorapidity Distributions:
 Non-central Collision



v  The measured distribution ρ(η) is shifted by the beam rapidity, ybeam, while the 
calculated distribution is shifted by yeff = ln(εNN /mp) and becomes a function of η
′ = η − yeff. Then the distributions coincide as expected.
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Energy Balanced Limiting Fragmentation
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v  The dotted l ines represent the 
calculations from the effective-
energy approach

v  The calculations, driven by the 
centrality-defined effective c.m. energy 
εNN, well reproduce the LHC data

v  RHIC da ta show a s ign i fican t 
difference with the calculations for 
peripheral collisions

v  The difference between RHIC data and 
calculations is explained by including 
the Energy Balanced Limiting  
Fragmentation Scaling 
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Mean Multiplicity Centrality Dependence:
Energy Balanced Limiting Fragmentation 
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v  Hybrid and power-law fits show a good 
agreement with AA data and are almost 
indistinguishable

v  LHC data departs from log2 polynomial fit at 
√sNN about 1 TeV, indicates a possible 
transition to a new regime in heavy-ion 
collisions 

v  Charged particles mean multiplicities 
calculated from the dissipation energy 
approach for AA data, using the pp/ppbar 
measurements, well describe the heavy-ion 
measurements

v  The centrality data show the energy 
dependence similar to head-on data  as soon 
as the centrality data are considered in terms 
of the effective energy. The RHIC data are 
recalculated by using the Energy Balanced 
Limiting Fragmentation Scaling

Prediction for heavy-ion collisions at 
√sNN = 5.13 TeV and the  expectation 
at √spp = 13 TeV are shown. 

Mean Multiplicity Energy Dependence
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v  The power-law and hybrid fit  functions  fit 
well the data in the entire c.m. energy 
region and are seen to overlap up to √spp= 
10 TeV

v  Log2-polynomial fit function is also very close 
to the power-law fit even for √spp > 2 TeV

v  No change in the multihadron production in 
pp interactions up to the top LHC energy in 
contrast to a new regime possibly occurred 
at √sNN ≈ 1 TeV in heavy-ion collisions

v  pp  participant dissipating energy 
approach predictions are given
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Mean Multiplicity Energy Dependences
in pp Interactions 



v  The AA multiplicity measurements are well reproduced under the assumption 
of the effective energy deriving the multiparticle production process and pointing 
to the same energy behaviour for all types of heavy-ion collisions, from 
peripheral to the most central collisions

v  A new scaling, called the energy balanced limiting fragmentation scaling, 
which takes into account the balance between the collision energy and the energy 
shared by the participants, is introduced 

v  Energy balanced limiting fragmentation scaling provides a solution of the RHIC 
“puzzle” of the difference between the centrality independence of the mean 
multiplicity vs. the monotonic decrease of the midrapidity pseudorapidity density 
with the increase of centrality 

v  Under the concept of the effective energy and using the energy balanced limiting 
fragmentation scaling, the centrality data are found to follow the head-on 
collisions √sNN  dependence  

v  A possible transition to a new regime at √sNN ~1 TeV is indicated

v  Predictions are made for heavy-ion and pp collisions for upcoming energies at the 
LHC 
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Summary and Conclusions




