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Bulk and shear viscosities for the Gribov-Zwanziger plasma
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Abstract. The concept of the Gribov-Zwanziger plasma is introduced and used to calcu-
late the bulk and shear viscosities of the system of gluons. The kinetic coefficients are
obtained in two different ways which are shown to yield equivalent results.

1 Introduction

In this contribution I report on the recent results obtained in collaboration with Radoslaw Ryblewski,
Nan Su, and Konrad Tywoniuk [1, 2] describing the form of the bulk and shear viscosity coefficients
for the Gribov-Zwanziger (GZ) plasma. The concept of the GZ plasma follows from the use of the
dispersion relation

E(k) =

√
k2 +

γ4
G

k2 (1)

for the gluons [3]. Here k is the three-momentum of gluons and E denotes their energy. The parameter
γG appears during the quantisation of the Yang-Mills theory. Equation (1) has been derived for the first
time by Gribov in his famous paper [3]. It takes into account the expected behavior of gluons in the in-
frared, namely, a large energy cost connected with the excitation of soft modes and the corresponding
reduction of the physical phase space [3–7]. The use of (1) suggests that interacting massless gluons
are equivalent to non-interacting gluons having this very special form of the dispersion relation.

Thermodynamic properties of the system with the particles obeying Eq. (1) have been worked out
in Refs. [8, 9]. The main results follow directly from the use of (1) in the Bose-Einstein distribution
function

fGZ =
1

exp(E(k)/T ) − 1
, (2)

where T is the system’s temperature. This approach provides good agreement with the lattice results
on thermodynamic variables [10]. Encouraged by the success connected with the use of the dispersion
relation (1) in equilibrium, in Refs. [1, 2] we have made an attempt to construct a simple kinetic
theory that incorporates (1) and may describe processes out of equilibrium. In particular, in [1] we
have concentrated on the calculation of the bulk viscosity which attracts more and more attention in
the last years [11–15].
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2 Lorentz covariance and boost-invariance
2.1 Reimplementation of Lorentz covariance

At first it should be emphasised that the original dispersion relation (1) is derived in the Coulomb
gauge which explicitly breaks Lorentz invariance. In order to regain a covariant framework, that is
required for description of relativistic fluids, one has to make certain assumptions about the Lorentz
transformation properties of the quantities that appear in Eq. (1). The strategy to recover the covariant
description is not straightforward and we discuss this problem in greater detail in Ref. [2].

We choose the procedure where the Gribov dispersion relation (1) is transformed into the follow-
ing covariant expression [1, 2]

E(k · u) =

√
(k · u)2 +

γ4
G

(k · u)2 . (3)

Here u is the four-velocity of the fluid element. We assume that the Coulomb gauge as well as the
in-medium value of the Gribov parameter γG are fixed in the local rest frame where uµ = (1, 0, 0, 0).

We introduce k0 ≡ |k|, which is the magnitude of the three-vector k ≡ (kx, ky, k‖), and k⊥ =
√

k2
x + k2

y

such that the resulting four-vector kµ = (k0, k) has standard Lorentz transformation properties with
k2 = k · k = 0.

2.2 Boost-invariance

One of the simplest ways to obtain the formulas for the kinetic coefficients is to analyse a (0+1)-
dimensional, boost-invariant and transversally homogeneous system. We stress that in contrast to the
problem of Lorentz covariance, which is the fundamental issue connected with the use of the Coulomb
gauge, imposing boost-invariance is just a technical method to facilitate our manipulations.

The boost-invariant systems are characterised by the flow vector uµ = (t/τ, 0, 0, z/τ) [16]. In this
case, all scalar functions of space and time depend only on the longitudinal proper time τ =

√
t2 − z2.

One may furthermore introduce the boost-invariant variables v = k0t − k‖z and w = k‖t − k0z [17]. In
this case the energy of the particle is given by the formula

E(τ, w, k⊥) =

√
w2

τ2 + k2
⊥ +

γ4
G

w2

τ2 + k2
⊥

. (4)

The phase space integration measure in the three-momentum space can be written correspondingly as∫
dK(. . .) =

g0

(2π)3

∫ ∞

−∞

dw
τ

∫
d2k⊥(. . .) , (5)

where g0 is the number of internal degrees of freedom. We note that the phase space distribution
function f , which is also a Lorentz scalar, may depend in our case only on τ, w and k⊥, namely
f = f (τ, w, k⊥) [17].

3 Kinetic equation
3.1 Relaxation time approximation

The arguments presented in [1, 2] suggest that we can use the standard kinetic equation in the
relaxation-time approximation (RTA) of the form [18–20]

∂ f (τ, w, k⊥)
∂τ

=
fGZ(τ, w, k⊥) − f (τ, w, k⊥)

τrel(τ)
, (6)
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where τrel is the relaxation time and the (effective) temperature T appearing in the equilibrium distri-
bution function fGZ is determined from the equation∫

dK E(τ, w, k⊥) fGZ(τ, w, k⊥) =

∫
dK E(τ, w, k⊥) f (τ, w, k⊥) . (7)

Equation (7) is known as the Landau matching condition for the energy. The formal solution of Eq. (6)
is [21–23]

f (τ, w, k⊥) = f0(w, k⊥)D(τ, τ0) +

∫ τ

τ0

dτ′

τrel(τ′)
D(τ, τ′) fGZ(τ′, w, k⊥) , (8)

where the damping function D(τ2, τ1) has the form

D(τ2, τ1) = exp
[
−

∫ τ2

τ1

dτ
τrel(τ)

]
. (9)

Inserting the solution (8) into the Landau matching condition (7) allows us to find the time depen-
dence of the system’s temperature, T (τ). This, in turn, when used back in (8), allows us to find the
time dependence of various system’s characteristics such as the energy density and transverse and
longitudinal pressures.

3.2 Linear response method

Besides the exact treatment of the kinetic equation that has been sketched above, we may use the
linear respond method. In this case we seek the solution of Eq. (6) in the form

f ≈ fGZ + δ f + · · · , (10)

where δ f = −τreld fGZ/dτ. This leads directly to the following result

δ f = −
E τrel

Tτ

 w2

E2τ2

1 − γ4
G(

w2

τ2 + k2
⊥

)2

 + c2
s

 fGZ (1 + fGZ) . (11)

The speed of sound squared, c2
s , that appears in (11) can be obtained from the equation of state. The

correction to the distribution function (11) can be used further to obtain the shear tensor πµν and
the bulk pressure Π. These quantities define directly the bulk and shear viscosities if the Navier-
Stokes limit is considered. Straightforward manipulations lead to the following expression for the
bulk viscosity coefficient [1]

ζ =
g0γ

5
G

3π2

τrel

T

∫ ∞

0
dy

[
c2

s −
1
3
y4 − 1
y4 + 1

]
fGZ(1 + fGZ), (12)

where fGZ = {exp[γG

√
y2 + y−2/T ] − 1}−1. In the similar way we obtain the shear viscosity coeffi-

cient [1, 2]

η =
g0γ

5
G

30π2

τrel

T

∫ ∞

0
dy

(
y4 − 1

)2

y4 + 1
fGZ(1 + fGZ) . (13)
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Figure 1. Time dependence of pressure for three different values of the relaxation times. The initial condition
corresponds to the equilibrium state with the initial temperature T0 = T (τ0) = 600 MeV. The initial time is
τ0 = 0.5 fm/c.

4 Numerical results
Let us now turn back to the discussion of the exact solutions of the kinetic equation. Knowing the
time dependence of the effective temperature T we find the longitudinal and transverse pressures from
the equations

P‖ =

∫
dK

w2

τ2E(τ, w, k⊥)

[
1 −

γ4
G

(w2/τ2 + k2
⊥)2

]
f , (14)

P⊥ =

∫
dK

k2
⊥

2 E(τ, w, k⊥)

[
1 −

γ4
G

(w2/τ2 + k2
⊥)2

]
f , (15)

and the total pressure is obtained as P = 1
3 (P‖ + 2P⊥). We note that the parallel pressure acts in the

direction of the beam axis. The transverse pressure acts in the transverse direction to the beam and is
the same for all such directions. The numerical results for the time evolution of pressures is shown
in Fig. 1. Knowing P‖ and P⊥ we find the shear and bulk viscous pressures (in the general case the
shear tensor πµν has 5 independent components, they are reduced to one independent variable π for
(0+1)D systems)

π =
2
3

(
P⊥ − P‖

)
, (16)

Π = P − PGZ. (17)

The last two equations allow us to define the effective shear and bulk viscosities

π =
4
3
ηeff

τ
, (18)

Π = −
ζeff

τ
. (19)
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Figure 2. Temperature dependence of the bulk viscosity scaled by the relaxation time and entropy density. The
triangles, circles and squares show the effective bulk viscosity for three different values of the relaxation time
(defined in the figure), whereas the solid line shows the result of the linear-response formula.
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Figure 3. The same as Fig. 2 but for the shear viscosity.

The effective coefficients should agree with the standard coefficients when the system is close to
equilibrium. This is demonstrated in Figs. 2 and 3.
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5 Conclusions

The Gribov-Zwanziger quantisation of the Yang-Mills theory leads to the dispersion relation that can
be successfully used in the studies of gluon thermodynamics and kinetic theory. In this contribution
we have presented the results for the bulk and shear viscosities of the Gribov-Zwanziger plasma.
These results may be useful for future phenomenological applications for ultrarelativistic heavy-ion
collisions.
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