

MEASUREMENTS OF THE PROTON-AIR CROSS SECTION WITH HIGH ENERGY COSMIC RAY EXPERIMENTS.

INTERNATIONAL SYMPOSIUM OF MULTIPARTICLE DYNAMICS OCT. 6TH 2015

OUTLINE

- Motivation
- Experimental Methods
- Experimental Results
- Conclusion

MOTIVATION

- σ_{p-p} beyond the lhc
- constrain the high energy models prediction of hadronic interaction σ_{p-air} in the atmosphere.

Access beyond the LHC

EXPERIMENTAL METHODS

σ_{p-air} from the extensive air shower

CONVOLUTION METHOD

EXTRACT LAMBDA FROM THE XMAX DISTRIBUTION

- Xmax distribution is convolution of X1 and Landau like distribution
- Get lambda by deconvolution
- Advantage: fit to the whole Xmax distribution.

$$\frac{1}{\beta\sqrt{2\pi}} \int_0^{x_m} \frac{1}{\lambda_{p-air}} e^{-x_1/\lambda_{p-air}} e^{\frac{1}{2}\left[\frac{x_m-x_1-\alpha}{\beta} + e^{-\left[\frac{x_m-x_1-\alpha}{\beta}\right]\right]} dx_1$$

CONVOLUTION METHOD

$$\frac{1}{\beta\sqrt{2\pi}}\int_0^{x_m}\frac{1}{\lambda_{p-air}}e^{-x_1/\lambda_{p-air}}e^{\frac{1}{2}\left[\frac{x_m-x_1-\alpha}{\beta}+e^{-\left[\frac{x_m-x_1-\alpha}{\beta}\right]\right]}dx_1$$

 Disadvantage: Highly dependent on the mean Xmax value —>Highly model dependence.

MODIFIED CROSS SECTION METHOD

$$\sigma^{modified} = \sigma^{E-model}(E) \cdot \left(1 + (f19 - 1) \frac{\log_{10}(E/1PeV)}{\log_{10}(10EeV/1PeV)}\right)$$

E: Shower energy f19: factor by which show is modified at 10¹⁹eV⁹

- Modifying the energy dependence cross section of the p-air and the hadronic cross sections in the shower
- Modifying multiplicity, *elasticity*, pion to charge ratio.

K FACTOR METHOD

- Beam of N protons will be attenuated by $dN/dX = -N/\lambda$
 - λ : proton mean free path $\lambda = m_{pair} / \sigma_{pair}$
 - $= 14.45 \times m_p / \sigma_{pair}$

Practical solution: Measure depth of X

K-FACTOR METHOD

- Using deeply penetrating particles. the tail of the Xmax distribution
- Attenuation length in proportion to the propagation length.

 $\Lambda = k\lambda_{p-air}$

• Determine the inelastic proton-sir cross section

$$k\lambda_{p-\text{air}} = k \frac{14.5m_p}{\sigma_{p-\text{air}}^{\text{inel}}}$$

K VALUE

- Determined from high energy shower models.
- Simulate 10000 events for each 0.1 step in Log₁₀E(eV) [Conex*]
- Calculate the attenuation length from the slope of the Xmax distribution decrement
- determine the interaction length λ_{pair} from the model first point of the pair interaction slant depth X_1 .

Model	K
QGSJETII.4	1.15 ± 0.01
QGSJET01	1.22 ± 0.01
SIBYLL	1.18 ± 0.01
EPOS-LHC	1.19±0.01

K VALUE DEVELOPMENT AND THIS WORK

13

- Fly's Eye K value 1.6 (theoretical model)
- by 2001(Pryke) K from the full model simulations~7%*
- Models evolving and LHC data
- K model dependence 3%

Weekly model dependence

Model	K
QGSJETII.4	1.15±0.01
QGSJET01	1.22 ± 0.01
SIBYLL	1.18±0.01
EPOS-LHC	1.19±0.01

EXPERIMENTAL RESULTS

THE AUGER DETECTOR

- Malargue, Argentina
- 1660 water Cherenkov stations [3000 km²]
- four Fluorescence Detectors
- 39360 hybrid events
- 2004-2012
- Energy Range 10^{17.8}-10¹⁸-10^{18.5} eV

Auger Collaboration PRL 104,091101 (2010)

DATA SELECTION

- Quality cuts. Fiducial selection.
- Tight cuts to remove acceptance, reconstructed biases.
- compare simulation at generator level
- Xmax resolution of < 25 g/cm2, E above EeV

ATTENUATION LENGTH

 $\langle \mathsf{E}
angle = 10^{17.90} \, \mathrm{eV}$ $\Lambda_\eta = 60.7 \pm 2.1 (\mathrm{stat}) \pm 1.6 (\mathrm{syst}) \, \mathrm{g/cm^2}$ $\langle \mathsf{E} \rangle = 10^{18.22} \,\mathrm{eV}$ $\Lambda_{\eta} = 57.4 \pm 1.8 (\mathrm{stat}) \pm 1.6 (\mathrm{syst}) \,\mathrm{g/cm^2}$

600

X_{max}

⁸⁰⁰ [g/cm²]

1000

10¹⁸< E <10^{18.5} eV

 $\Lambda_{m} = 57.4 \pm 1.8 \text{ g/cm}^{2}$

1200

1400

conversion of Λ to σ_{p-air}^{inel} using modified cross section method

Auger Collaboration ICRC2015

Systematic uncertainties

	$10^{17.8} - 10^{18} \mathrm{eV}$	$10^{18} - 10^{18.5}\mathrm{eV}$
Λ_{η} , systematic uncertainties (mb)	13.5	14.1
Hadronic interaction models (mb)	10	10
Energy scale uncertainty, $\Delta E/E = 14\%$ (mb)	2.1	1.3
Conversion of Λ_{η} to σ_{p-air} (mb)	7	7
Photons (mb)	+4.7	+4.2
Helium, 25% (mb)	-17.2	-15.8
Total systematic uncertainty on σ_{p-air} (mb)	+19/-25	+19/-25

PROTON-ÅIR CROSS SECTION

Results, $\sigma_{\rm p-air}$ in mb

- Lower energy point 457.5±17.8(stat)+19/-25(syst)
- Higher energy point 485.8±15.8(stat)+19/-25(syst)

Auger Collaboration ICRC2015

THE TELESCOPE ARRAY DETECTOR

21

. 1 × 18 × 18 *** 00

-

DATA COLLECTION

• Delta, Utah

- 507 scintillation surface detector [700 km²]
- three Fluorescence Detectors
- 439 hybrid events 1 fluoresce detector and surface detector array
- 2008-2013
- Energy Range 10^{18.3}-10^{19.3} eV

DATA SELECTION

- Pattern recognition cuts.
- compare to simulation including detector and reconstruction effect.
- Xmax resolution of ~ 23 g/cm², E above EeV.

*R. Abbasi et al., Astropart. Phys. 64, 49 (2014),

ATTENUATION LENGTH

 $\begin{array}{c} \text{conversion of } \Lambda \text{ to } \sigma_{p\text{-air}}{}^{\text{inel}} \text{ using} \\ \text{the k-factor method} \end{array}$

R. Abbasi et al., PRD 92 032007 (2015)

SYSTEMATICS UNCERTAINTIES

LARGEST SYSTEMATICS UNCERTAINTIES: UNKNOWN CONTAMINATION

COMPOSITION FROM AVERAGE SHOWER <XMAX>

TA/AUGER COMPOSITION WORKING GROUP

The Average Xmax of the two observatories are in good agreement.

P-AIR CROSS SECTION SYSTEMATICS SUMMARY

- Model dependence (±17 mb)
- Attenuation length
- Energy dependence bias in the Xmax distribution (Negligible)
- Detector Bias(Negligible):
- Helium contamination(10,20,50)% (-9,-18,-42)mb

Energy(eV

• Gamma(<1%) 23mb.

 $\sigma_{p-air}^{inel} = 567.0 \pm 70.5 [Stat.] (+25,-29) [Sys.] mb$

CONVERSION TO PROTON-PROTON CROSS SECTION

P-AIR CROSS SECTION PROTON-PROTON CROSS SECTION

- Glauber Formalism*
 - nuclear geometry
 - multiple interactions
 - opacity profile of nucleons

 Block, Halzen, and Stanev. **

*R. Glauber and G. Matthiae, Nucl.Phys. B21, 135 (1970)
**M. Block and F. Halzen, Phys.Rev. D72, 036006 (2005).
31 ** Block, Phys.Rev. D84, 091501 (2011).

P-AIR CROSS SECTION PROTON-PROTON CROSS SECTION AT CME 97 TEV

 $\sigma_{p-p}^{total} = 170 (+48,-44) [Stat.] (+17,-19) [Sys.] mb$

R. Abbasi et al., PRD 92 032007 (2015)

CONCLUSION AND OUTLOOK

- Continuously further improved experimental results on the σ_{p-air}^{inel} measurement from cosmic ray detectors $E_{UHECR} >> E_{LHC}$.
- Latest updates:
 - Auger ICRC 2015
 - TA R. Abbasi et al., PRD 92 032007 (2015)
 - Future measurements with the full TA detector.

Thank You!

Backup slides

TA/AUGER COMPOSITION WORKING GROUP

TA COMPARISON OF XMAX DISTRIBUTION QGSJETII3

BLOCK HALZEN AND STANEV

** PHYSICAL REVIEW D 76, 111503(R) (2007).

K VALUE DEPENDENCE

DECREMENT OF THE SLOPE SYSTEMATICS

 $\Lambda = 50.47 \pm 6.26$ [stat.] g/cm²

- Data divided in halves based on:
 - Zenith angle
 - Distance of Shower (Rp)
 - Energy of events

Energy (eV)	$\Lambda [g/cm^2]$
$E > 10^{18.63}$	55.7±10.1
E < 10 ^{18.63}	45.5±7.7

Attenuation lengths are consistent within the statistical fluctuations.

DECREMENT OF THE SLOPE SYSTEMATICS

 $\Lambda = 50.47 \pm 6.26$ [stat.] g/cm²

- Data divided in halves based on:
 - Zenith angle
 - Distance of Shower (Rp)
 - Energy of events

Attenuation lengths are consistent within the statistical fluctuations.

P-AIR CROSS SECTION

 $\sigma_{p-air}^{inel} = 567.0 \pm 70.5 [Stat.] mb$

P-AIR CROSS SECTION SYSTEMATICS

- Energy dependence bias in the Xmax distribution (Negligible): Shift Xmax by elongation rate.
- Detector Bias(Negligible): Event detection, reconstruction, cuts.

High Energy Hybrid Event

