XLV International Symposium on Multiparticle Dynamics (ISMD2015) Wildbad Kreuth, Germany, October 4-9, 2015

Overview of Quarkonium Production in Heavy-Ion Collisions at LHC

Byungsik Hong (Korea University)

Introduction

■ pp

- Reference to understand pA and AA data
- Cross section for production mechanism
 - Color Octet vs. Color Singlet
- Polarization for interactions with surroundings not affected by initial-state effect

■ pA

- Nuclear modification of gluon PDF (nPDF): shadowing, saturation, CGC, etc.
- Medium-induced coherent gluon radiation
- Co-mover absorption

AA

- Color-charge screening effect: λ_D vs. r
 - Sequential suppression: Different states dissociate at different temperatures
- Regeneration of q and \overline{q}
 - Expected to be larger for J/ψ than for Υ

Complimentary acceptance for LHC detectors

Quarkonium cross section in pp

↑ New J/ψ , $\psi(2S)$ and $\Upsilon(nS)$ spectra extend p_T beyond 100 GeV/c at LHC. ↑ Good agreement between data and NLO pQCD, especially, for high p_T

Non-linear heavy-quark yields in pp

- Stronger rises of the Υ yields vs. event activity
 - Common to both closed and open bottom at RHIC and LHC
 - Similar trend for the charm sector at RHIC and LHC

$$- \frac{\Upsilon(1S)}{\langle \Upsilon(1S) \rangle} > \frac{\Upsilon(2S)}{\langle \Upsilon(2S) \rangle} > \frac{\Upsilon(3S)}{\langle \Upsilon(3S) \rangle}: Why?$$

- Proposed ideas
 - Multi-parton interaction, Percolation model with string screening, ...

Quarkonium polarization in pp

- Data points are scattered around the unpolarized limit with no significant dependences on p_T, y, flavor and feed-down effect at LHC.
 - Quarkonia are produced via common production mechanism

and $\tilde{\lambda}$ =-1 for

- Pre-resonant $Q\bar{Q}$ pairs are dominantly produced in color octet state, ${}^{1}S_{0}^{[8]}$
- Try a frame independent approach using $\tilde{\lambda} = \frac{\lambda_{\theta} + 3\lambda_{\phi}}{1 \lambda_{\phi}}$

Υ polarization in pp

CMS-HIN-15-003

- Polarization results obtained in HX, CS, PX agree each other.
- No significant changes in Y(nS) polarizations can be seen as a function of N_{ch} in pp

HX (C.M. helicity frame): polar axis = Υ momentum

CS (Collins-Soper frame): polar axis = average of two beam directions in the Υ rest frame PX (Perpendicular helicity frame): polar axis = orthogonal to the CS frame

Inclusive J/ψ in pA

pPb @ $\sqrt{s_{NN}}$ =5.02 TeV, 0-100% ALICE, JHEP 02, 073 (2014)

- ← Backward data agree with nPDF and/or energy-loss (Eloss) models.
- ← Forward data: energy loss essential, but CGC overestimates suppression.

ALICE, JHEP 06, 055 (2015)

- No significant nuclear effects in backward region.
- ↓ Mid and forward rapidities: J/ψ suppression at low p_T (< 5 GeV/c)
- ↓ nPDF+Eloss fails to reproduce the data at low p_T in forward region.

October 4-9, 2015

October 4-9, 2015

October 4-9, 2015

$\psi(2S)$ in pA

October 4-9, 2015

14

(N^{mult})

16

12

10

8

$\Upsilon(nS)$ in pPb

 Suppression of Y(3S) is larger than that of Y(2S) in pPb

$\Upsilon(1S)$ in pPb

ALICE, PLB 740, 105 (2015)

- $\leftarrow \text{ Smaller } R_{pPb} \text{ (more suppression)} \\ \text{ for } \Upsilon(1S) \text{ than for } J/\psi \text{ at backward}$
- ✓ Fair agreement between the data and the various nPDF and/or Eloss model calculations
- ↓ LHCb data are systematically larger than ALICE data for forward and backward rapidities.

October 4-9, 2015

TM1: Zhao et al., NPA 859, 114 (2011) TM2: Zhou et al., PRC 89, 054911 (2014)

- Models with shadowing and regeneration can reasonably describe the data.
- ← The rise towards p_T = 0 is due to the dominant regeneration component.

Inclusive J/ψ in PbPb

- $\langle N_{part} \rangle$ dependence of r_{AA}
 - Increases with centrality at SPS: Cronin effect
 - Decreases with centrality at LHC:
 - Indication of regeneration and thermalization of charm quarks

 $r_{AA} =$

J/ψ in PbPb

CMS, PAS HIN-12-014

October 4-9, 2015

J/ψ in PbPb

CMS-HIN-15-005

- No need for regenerations at high p_T
- $R_{AA}(B) > R_{AA}(D)$: Mass ordering predicted by dead cone effect

For $3 < p_T < 30 \text{ GeV/c}$ in 1.6 < |y| < 2.4, $R_{\psi(2S)}$ in central (20%) PbPb is ~ 5 times larger than that in pp with larger systematic error.

For 6.5< p_T <30 GeV/c in |y| < 1.6, $R_{\psi(2S)}$ in central (20%) PbPb is ~2 times smaller than that in pp.

 Indication of ψ(2S) being less suppressed than J/ψ (<2σ effect) at low p_T in the most central events: Need more J/ψ statistics during LHC Run II.

$\Upsilon(nS)$ in PbPb

CMS, HIN-15-001

↑ Centrality integrated results: Υ states suppressed sequentially (0-100%) $R_{AA}[\Upsilon(1S)] = 0.425 \pm 0.029 \pm 0.070$ $R_{AA}[\Upsilon(2S)] = 0.116 \pm 0.028 \pm 0.022$ $R_{AA}[\Upsilon(3S)] < 0.14$ at 95% CL

- ↗ Anisotropic hydrodynamic model for thermal suppression of bottomonia
 - 2 temperatures along y, 3 shear viscosities, no CNM, no regeneration, ...
- ↗ Transport model taking into account CNM and regeneration

CMS, HIN-15-001

- $\leftarrow \Upsilon \text{ suppression does not strongly} \\ \text{depend on kinematics.}$
- Anisotropic hydro model cannot reproduce the forward data: CNM may help?

J/ψ photo-production

- An excess of J/ψ observed at low $p_T < 300$ MeV/c in peripheral collisions
- Possible origin: coherent J/ψ photo-production in ultra-peripheral collisions

J/ψ photo-production

CMS, HIN-12-009

ALICE and CMS data favor moderate nuclear shadowing models such as **AB-EPS09** and **GSZ-LTA** for nPDF.

October 4-9, 2015

Summary

- 1. pp
 - New J/ψ and Υ data at LHC will help constraining production models.
 - Non-linear increasing yields and polarizations are yet to be understood.
- 2. pA
 - Interplay between shadowing and energy loss can describe J/ψ data.
 - Co-mover effect is important to understand the $\psi(2S)$ production.
- 3. AA
 - Suppression and regeneration are necessary to describe the low- $p_T J/\psi$ data on nuclear modification factor and p_T broadening.
 - Less suppression of $\psi(2S)$ relative to J/ψ for the most central collisions has been observed that needs to be confirmed by RUN II.
 - γ suppression does not strongly depend on kinematic variables.
 - Photo-production of J/ψ favors moderate nuclear shadowing.
- 4. LHC RUN II with large statistics will be crucial to understand many puzzles in the current heavy-ion results.