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High-energy heavy-ion collisions and QGP

The Quark-Gluon Plasma (QGP) is a phase of QCD which is expected
to be created at sufficiently high temperatures and/or densities.

It is now well established that QGP is formed in high-energy
heavy-ion collision experiments at RHIC and LHC.

Our aim: to study and understand the thermodynamical and
transport properties of QGP.

QGP exhibit strong collective behaviour and therefore can be studied
within the framework of relativistic hydrodynamics.

Relativistic hydrodynamics has been applied quite successfully to
describe the space-time evolution of the QGP.

Hydrodynamical analyses suggests that QGP has an extremely small
shear viscosity.

An alternative model to estimate viscosity of QGP will be presented.
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Relativistic Heavy-Ion Collisions: Schematics
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Conversion of initial anisotropy to final flow

Amaresh Jaiswal ISMD 2015 4



How to measure η/s of QGP

Role of Hydrodynamics:

Initial state spatial deformation
Hydro
===⇒ Final state momentum anisotropy

Figure: Viscosity degrades conversion efficiency.
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Recent successes
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Blast wave model: A simple freezeout model

Extensively used to fit transverse momentum spectra of particles.

The hydrodynamic fields at freeze-out are parametrized as:

T = Tf , ur = u0
r

R
, uϕ = uηs = 0, uτ =

»
1 + (ur )2.

The hadron spectra can be obtained using the Cooper-Frye freeze-out
prescription:

dN

d2pTdy
=

1

(2π)3

∫
pµdΣµf (x , p).

dΣµ is the oriented freeze-out hyper-surface and f (x , p) is the
phase-space distribution function of the particles at freeze-out.

The distribution function: f = f0 + δf , where

f0 =
1

exp(uµpµ/T )+a
, a =

®
+1 for baryons
−1 for mesons

; δf =
f0f̃0
T 3

Å
η

s

ã
pαpβ∇〈αuβ〉
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Hydrodynamic conversion efficiency

Participant anisotropies, εn, via the Fourier expansion for a
single-particle distribution is:

f (ϕ) =
1

2π

[
1 + 2

∞∑
n=1

εn cos[n(ϕ− ψn)]

]
.

εn eventually converts to anisotropies in the radial fluid velocity

ur = u0
r

R

[
1 + 2

∞∑
n=1

un cos[n(ϕ− ψn)]

]
.

Important question: what is the hydrodynamic conversion efficiency?

un
εn

=?

Answer comes from “acoustic damping” formula.
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Acoustic damping [P. Staig and E. Shuryak, PRC 84, 034908 (2011)]

Dispersion relation for sound in a viscous medium:

ω = csk + ik2
1

T

Å
2

3

η

s

ã
.

Using a plane-wave Fourier ansatz, exp(iωt − ikx),

δTµν(t, k) = exp

ñ
−
Å

2

3

η

s

ã
k2t

T

ô
δTµν(0, k).

Each harmonics is a damped oscillator with wave-vector k which form
standing waves on the fireball circumference:

2πR = n
2π

k
.

R

n = 2

R

n = 3

R

n = 4
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Viscous blast-wave model

At the freeze-out time tf , the wave amplitude reaction is given by

δTµν |t=tf

δTµν |t=0
= exp

ï
−n2

Å
2

3

η

s

ã
tf

R2Tf

ò
.

The conversion efficiency is proportional to the wave amplitude
reaction [AJ and V Koch, arXiv:1508.05878 [nucl-th]]:

un
εn

= α0 exp
ï
−n2

Å
2

3

η

s

ã
tf

R2Tf

ò
.

Remember that the radial velocity is:

ur = u0
r

R

[
1 + 2

∞∑
n=1

un cos[n(ϕ− ψn)]

]
.

And other blast wave fields are:

T = Tf , uϕ = uηs = 0, uτ =
»

1 + (ur )2.
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Initial geometry and fixing R
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The initial radius r0 of the expanding fireball is given by

r0 =
1

2

(
b2 − 2 bR0

 
2 +

b

R0
+ 4R2

0

)1/2

The final radius using perturbation-free expression velocity

ur ≡ dr

dτ
= u0

r

R
⇒

∫ R

r0

dr

r
=

∫ τf

0

u0
R

dτ ⇒ R = r0 exp
Å
u0 τf
R

ã
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Parameters: viscous hydrodynamics vs. viscous blast-wave

Viscous hydrodynamics Viscous blast-wave

Tf : Freeze-out temperature Tf : Freeze-out temperature

τi : Initialization time τf : Freeze-out time

η/s: Shear viscosity η/s: Shear viscosity

ε0: Initial energy density u0: Radial freeze-out velocity

σ: Smearing parameter α0: Conversion efficiency strength

To remove centrality dependence of τf , we use Bjorken expansion
results:

ε ∝ τ−4/3 ⇒ τf = τf 0

Å
εi
εi0

ã3/4
.

τf 0: freeze-out time for central collision.

εi0: initial energy density for central collisions.

εi/εi0 and εn obtained from Monte-Carlo Glauber model.
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Results: Transverse momentum spectra
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Results: pT distribution of anisotropic flow
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Results: Integrated anisotropic flow
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Conclusions

Generalized the blast-wave model to include viscous effects.

Employed a viscosity-based survival scale for geometrical anisotropies
formed in the early stages.

This viscous damping is introduced in the parametrization of the
radial flow velocity.

This model incorporates important features of viscous hydrodynamic
evolution but does not require to do the actual evolution.

The blast-wave model parameters were fixed by fitting the transverse
momentum spectra of identified particles.

Demonstrated that a fairly good agreement is achieved for transverse
momentum distribution of elliptic and triangular flow for various
centralities.

Within the present model, we estimated the shear viscosity to entropy
density ratio η/s ' 0.24 at the LHC (η/s ' 0.2 obtained from hydro).
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