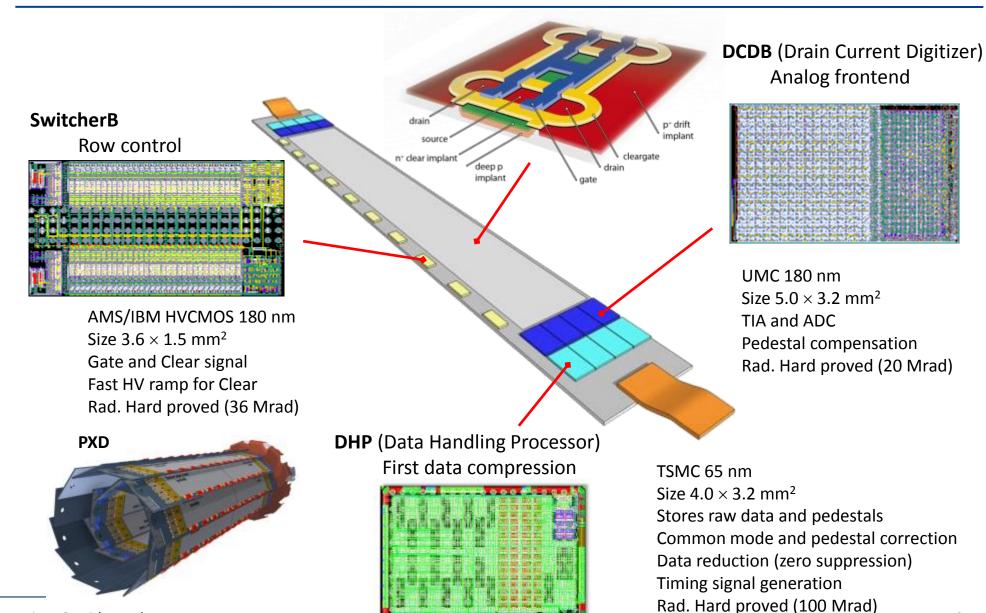


DHP

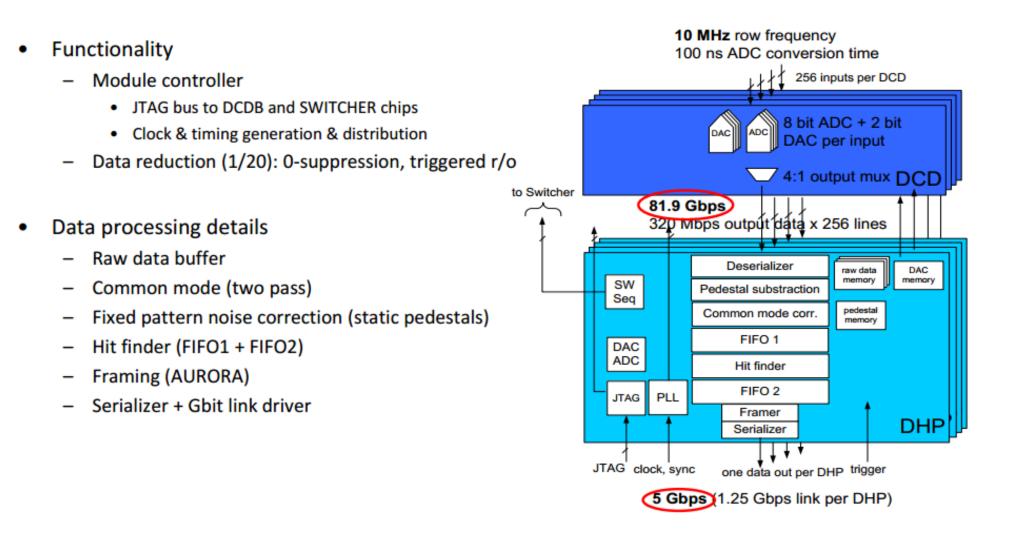

L. Germic, T. Hemperek, T. Kishishita, H. Krüger, F. Lütticke, <u>C. Marinas</u>, N. Wermes University of Bonn

cmarinas@uni-bonn.de

The DEPFET Ladder

cmarinas@uni-bonn.de

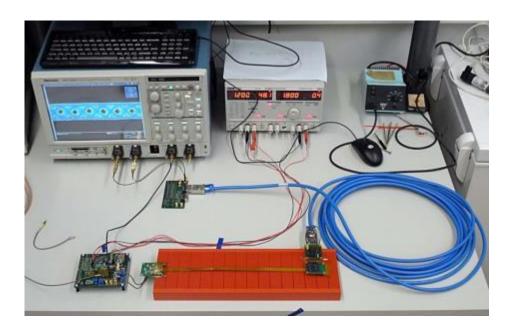
2

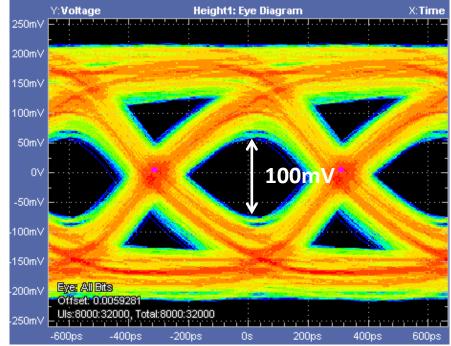

The DHP is a digital chip used to reduce data rates produced by the DCD

To do the data reduction, the DHP does:

- Data pre-processing: triggered frame selection, pedestal subtraction, common mode correction and zero suppression.
- Serial formatting to send the data to the DHH through a specially designed current mode logic serial link.
- Correct for pedestal spread sending the offset sequence.
- The DHP is responsible for the control sequence generation for the Switcher-B chips chain, thus steering the matrix.

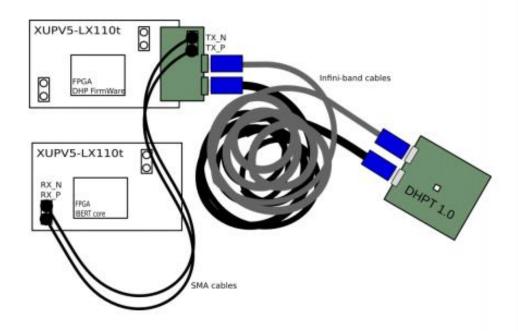
DHP Functional Overview

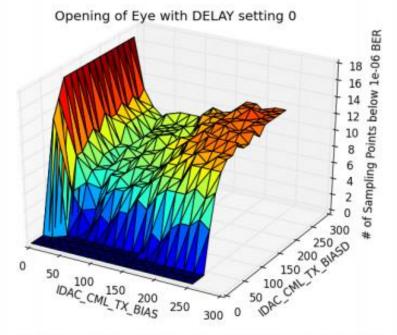




DHP Functionality

- Data processing
- SWITCHER sequencing
- Inter-chip communication
- Serial link




Irradiated (100 Mrad) DHPT 0.1, can drive 20 m of Infiniband cable

BER Tests

• Error rate tests and parameters optimization for designed 15m cables

Parameter optimization for 15m data cable

Optimal Working Point

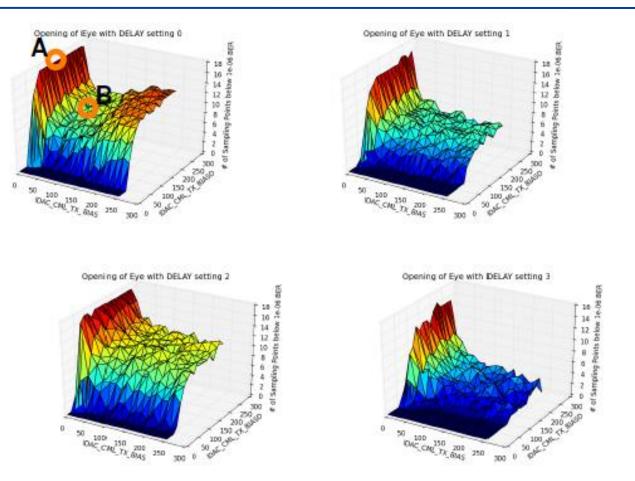


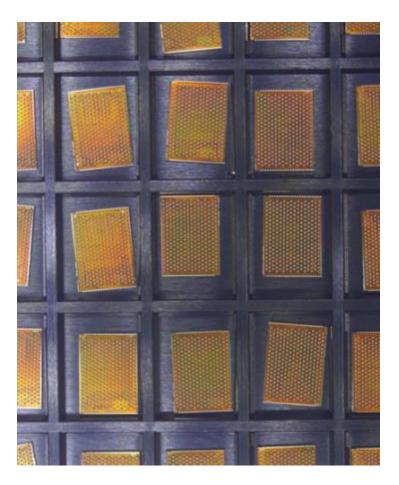
Figure: Sweep results at a threshold of $BER_{thr} = 10^{-6}$. Higher is better - wider opening at BER_{thr}

cmarinas@uni-bonn.de

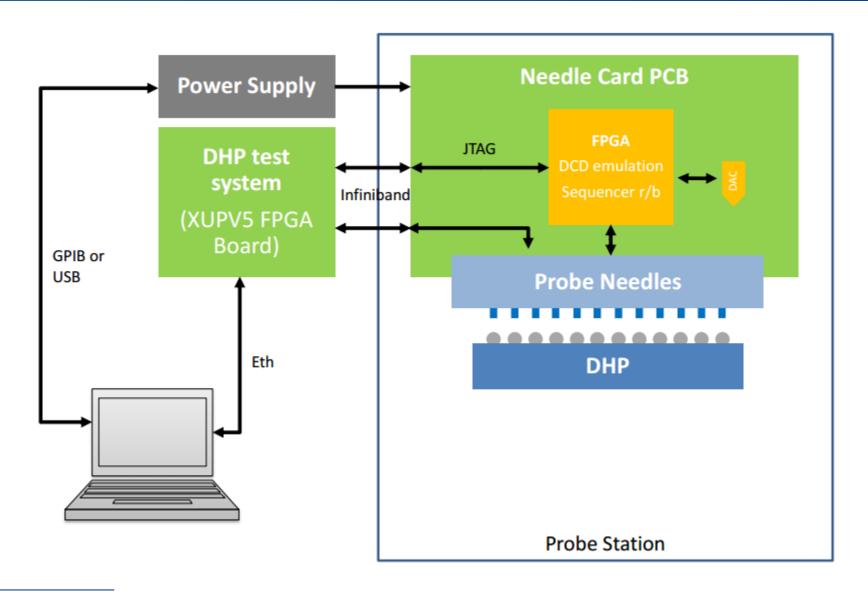
Status of the Funcional Verification

	IP Block / Task	Status	Comment
	Gbit Link Driver	✓	
	PLL / Serializer	(✓)	Works with adjusted VCC / CLK freq.
P	Temperature Sensor	✓	
Custom	LVDS IO	\checkmark	
Cus	Interface DHP-DCD	TBD	Need new WB adapter (LVDS DCDCLK)
	Interface DHP-Switcher	(✓)	Gated mode operation not verified yet
	Bias DAC, Current reference	✓	
٥d	Command Interface (Manchester encoded)	\checkmark	
essin	Memory Access (via JTAG)	✓	
Data Processing	Data Processing: Channel Masking	TBD	
	Double Precision Common Mode Processing	✓	
Δ	Overflow Handling	TBD	

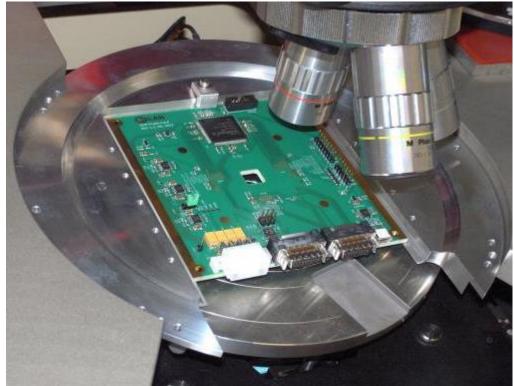
- Fix serializer (small change in the schematic/layout)
- Improve CML AMPLITUDE


Plans

- Hybrid 5.0:
 - Tests communication DCD ↔ DHP
 Irradiation, temperature, 2b DAC, timing and phase alignment
 - Assembly planned within the next 4 weeks
 - Tests to be finished by March
- EMCM:
 - System related aspects
 Link stability and parameter optimization



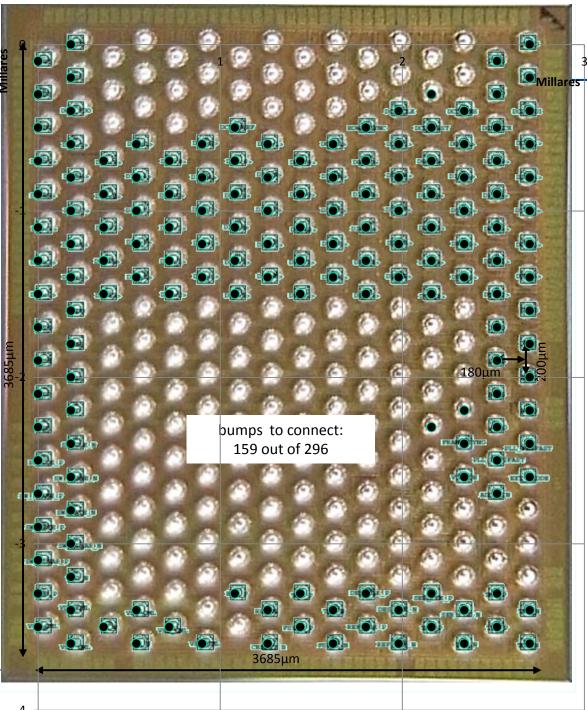
- PXD modules a sensitive to single-point-of-failure of the DHP
- We had very little statistics of the DHP yield (limited to wire bond adaptors)
- Need to qualify the chips before flip-chip mounting
- What do we do in terms of QC on the DHPs?
- How do we make sure the chips delivered are OK for mounting on the PXD?


cmarinas@uni-bonn.de

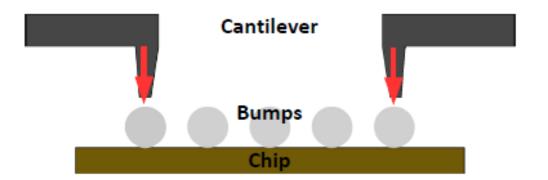
- Needle card fixture
- We have diced chips only
 - Put single chips on chuck (Ok for now)
- External components:
 - Power supply
 - VDD = 1.2 V, VDD_CML = 1.2 V and DVDD = 1.8 V
 - Xilinx XUPV5 Evaluation Platform (DHHemulator)
 - 1 GHz Oscilloscope

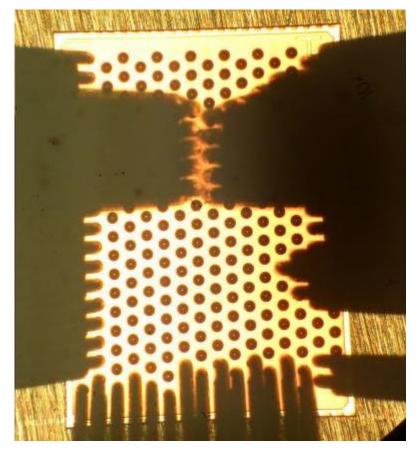
- Needle card fixture
- We have diced chips only
 - Put single chips on chuck (Ok for now)
- External components:
 - Power supply
 - VDD = 1.2 V, VDD_CML = 1.2 V and DVDD = 1.8 V
 - Xilinx XUPV5 Evaluation Platform (DHHemulator)
 - 1 GHz Oscilloscope

cmarinas@uni-bonn.de

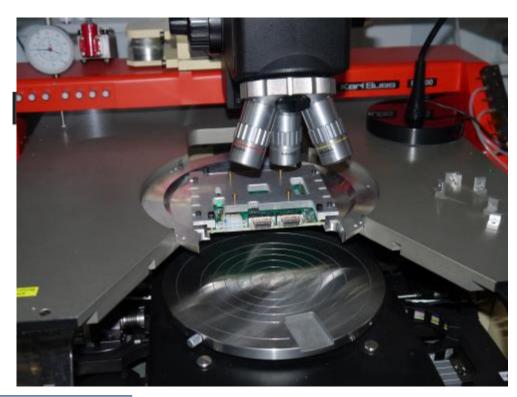

Needle Card

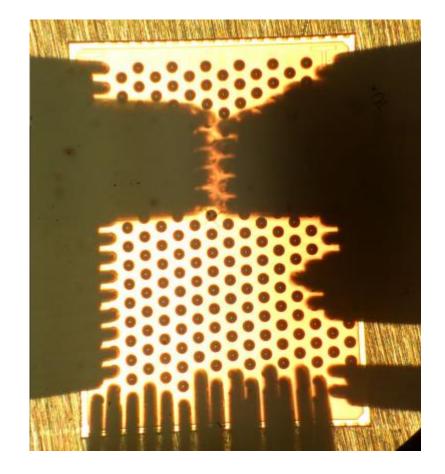
- Xilinx Spartan 6 (DCD emulator)
- Cantilever Needles
- Power Connector
- Infiniband Connector to DHHe (Data, JTAG)



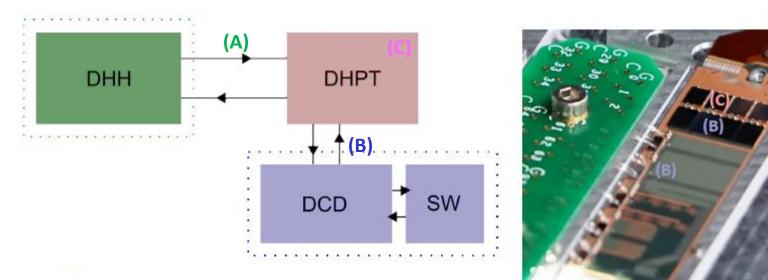

universität**bonn**

- 159 bumps need to be connected
- Material: SAC
- Pitch: 200 μm (y), 180 μm (x)
- ~110 μm diameter
- Connections:
 - JTAG (4x LVDS)
 - Timing (4x LVDS) DHP test system
 - Data Link (1x CML)
 - Aux clock (2x LVDS)
 - SWITCHER (4x LVDS)
 - DCD out (8x 8 HSTL)
 - DCD in (8x 2 CMOS)
 - DCD timing (2x CMOS)
 - DCD JTAG
 - DCD_ref (analog)
 - Power (8x VSS, 4x VDD, 2x VDD_CML)
 - PLLxx2Fast
 - FrameSync
 - ResetB (CMOS)
 - Analog IO test signals

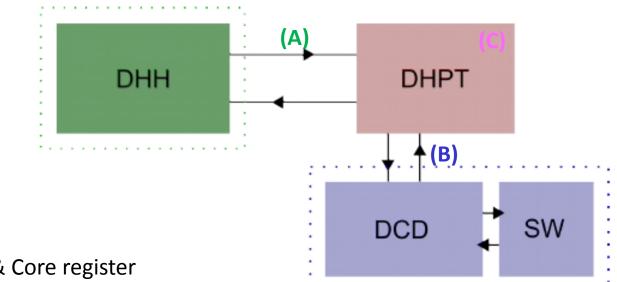

- 159 bumps connected Power, JTAG, DCD I/O and SW
- Over travel after last needle contacted ~10 μm
- Manual alignment and touchdown
- If card not used for days, needles pre-cleaned



- 159 bumps connected
 Power, JTAG, DCD I/O and SW
- Over travel after last needle contacted ${\sim}10~\mu m$
- Manual alignment
- If card not used for days, needles pre-cleaned

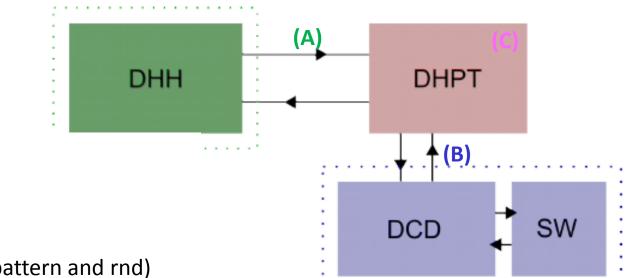


Test System


(A)

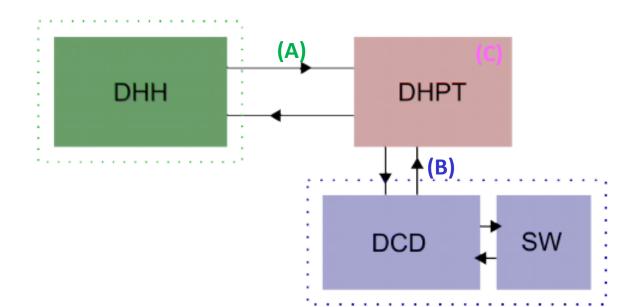
The tests must include 3 blocks:

- JTAG/Link (A)
- I/O (B)
- Logic (C)



JTAG/Link (A)

- Configuration of Global & Core register
- JTAG chain to DCD
- Temperature DACs
- Check CML driver DACs (Gbit Serial Link) via current consumption



I/O (B)

- DCD data (DCDpp test pattern and rnd)
- Switcher sequence generator
- DCD offset bits

cmarinas@uni-bonn.de

Logic (C)

- Zero-suppression
- Occupancy tests
- Threshold/hit finder
- SRAM tests
 - Standardized pattern (Oxaa)
 - Bit error counter (single bit flip compensation)

cmarinas@uni-bonn.de

Status of the Funcional Verification

	IP Block / Task	Status	Comment
	Gbit Link Driver	✓	
	PLL / Serializer	(✓)	Works with adjusted VCC / CLK freq.
٩	Temperature Sensor	✓	
Custom	LVDS IO	✓	
Cus	Interface DHP-DCD	TBD	Need new WB adapter (LVDS DCDCLK)
	Interface DHP-Switcher	(✓)	Gated mode operation not verified yet
	Bias DAC, Current reference	✓	
۵۵	Command Interface (Manchester encoded)	✓	
Processing	Memory Access (via JTAG)	✓	
roce	Data Processing: Channel Masking	TBD	
Data F	Double Precision Common Mode Processing	✓	
Δ	Overflow Handling	TBD	

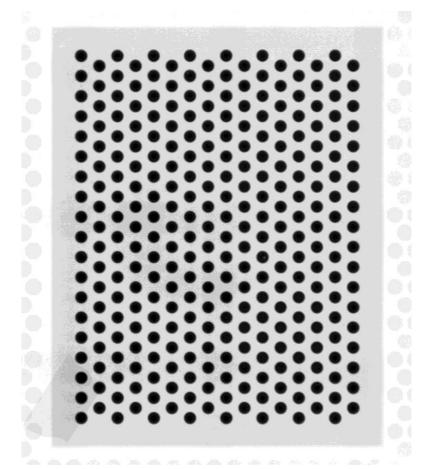
- Functional verification
 - Analog blocks
 - Digital signal processing $\rightarrow \checkmark$, ongoing (high occupancy test)
 - − Interface DCD, Switcher \rightarrow (\checkmark) gated mode operation, tbd.
 - Serializer too slow \rightarrow needs non standard operation conditions (higher VDD supply)
- Probe station test to deliver KGD for prototype module assemblies ongoing
- Continue with in-system verification using E-MCM and PXD9 pilot modules
 - Switching of operation modes
 - Signal integrity (high speed link)
 - TID sensitivity
- Planned re-design DHPT 1.1
 - Serializer bug fix
 - Anything else that eventually shows up (Data processing, E-MCM operation ...)

- Hybrid 5.0:
 - Tests communication DCD ↔ DHP
 Irradiation, temperature, 2b DAC, timing and phase alignment
 - Planned within the next 4 weeks
- EMCM:
 - System related aspects
 Link stability and parameter optimization
 - After B2GM
- Pilot Run PXD9
 - Gated mode and timing
 - April 2015

\rightarrow Final submission after positive feedback from these tests

cmarinas@uni-bonn.de

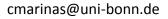
• 33 DHPT1.0 tested


4 non operational (1 broken, 3 with bump issues)

#Chip ID	Power		JTAG			DCD	Serial Link		Issues	
	GCK	VDD+VDD_CML	DVDD	DHH	DCD	sw sequence	Data	PLL	CML dirver	
1	x	<10mA	<30mA	x	n/A	n/A	n/A	n/A	n/A	no response
2	ok	~90mA	~37mA	ok	ok*	ok**	n/A	ok	ok**	
3	ok	~82mA	~42mA	ok	ok*	ok**	n/A	ok	ok**	
4	ok	~104mA	~31mA	ok	ok*	ok**	n/A	ok	ok**	
5	ok	~105mA	~39mA	ok	ok*	ok**	n/A	ok	ok**	
6	ok	~102mA	~38mA	ok	ok*	ok**	n/A	ok	ok**	
7	ok	~103mA	~38mA	ok	ok*	ok**	n/A	ok	ok**	
0	ok	~0.0m A	~2.2 m A	ak	ok*	ak**	n/A	ok	ak**	

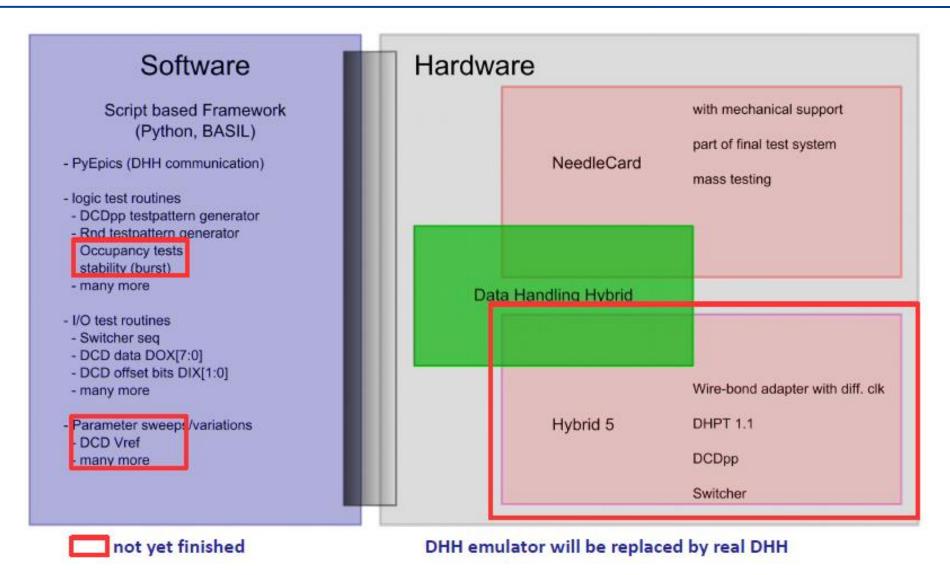
ok* loop back: DHH emulator \rightarrow TDI \rightarrow DCD emulator \rightarrow TDO \rightarrow DHH emulator ok** Oscilloscope inspection (incl. Gated mode via veto (trigger) and LFSR output)

- Optical inspection: Missing balls, scratches on the passivation
- Tests with needle card (grounding, handling, reinforcing plate)
- Metrology after needle card testing (flattened balls ~3-5 μm)
- No issues found after several flip chip assemblies at IZM



- MPW submission
 - Two MPW runs per month, turn-around ~12 weeks
- PXD production
 - Can be done with MPW production + extra wafers, no engineering run needed
 - 30 wafers on PXD9, 6 modules per wafer, 4 DHPT1.1 per module = **720 DHPT1.1** units
 - We assume so far a yield of 65 % (extrelemy pessimistic) \rightarrow 1100 DHPT1.1
- Full scale testing
 - 'Chess board' fixture with 10x10 array of cavities for production testing
 - Backup needle card
 - Realistic scenario: 85 % yield, 5 chips/day, 5 days/week → 8 months to deliver fully tested DHPs enough to populate the 180 modules from PXD9

cmarinas@uni-bonn.de



Thank you

Status of the Test System

cmarinas@uni-bonn.de

Automatic test system

- 1) Current and Voltage check (so far manually)
- 2) Configuration of JTAG registers
- 3) I/O testing
 - 3a) DCD emulator memory filled with random data (random bit gen.) and read by DHPT

 \rightarrow Comparison (5 cycles)

- 3b) DHPT switcher sequence is filled with random data
 - \rightarrow Switcher sequence is read and switcher mem blocks are swapped back and forth (5 cycles)
- 3c) DHPT offset bits are generated and read by the DCD emulator
 - \rightarrow Comparison (5 cycles)