Teilchenphysik mit höchstenergetischen Beschleunigern (Higgs & Co)

2. Detectors I

13.10.2014

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Prof. Dr. Siegfried Bethke Dr. Frank Simon

Detectors: Overview

Lecture Detectors I

- Introduction, overall detector concepts
- Detector systems at hadron colliders
- Basics of particle detection: Interaction with matter
- Methods for particle detection
- Lecture Detectors II
 - Tracking detectors: Basics
 - Semiconductor trackers
 - Calorimeters
 - Muon systems

Introduction, Overall Concepts

The Conditions at Hadron Colliders

 Interesting processes are rare compared to the overall cross section:

$$\sigma(t\bar{t})/\sigma_{tot} \sim 10^{-8}$$

$$\sigma(H, M_H = 150 \,\text{GeV}) / \sigma_{tot} \sim 10^{-10}$$

The Conditions at Hadron Colliders

 Interesting processes are rare compared to the overall cross section:

$$\sigma(t\bar{t})/\sigma_{tot} \sim 10^{-8}$$

$$\sigma(H, M_H = 150 \,\text{GeV}) / \sigma_{tot} \sim 10^{-10}$$

Very high event rates required!

The Conditions at Hadron Colliders

 Interesting processes are rare compared to the overall cross section:

$$\sigma(t\bar{t})/\sigma_{tot} \sim 10^{-8}$$

$$\sigma(H, M_H = 150 \,\mathrm{GeV}) / \sigma_{tot} \sim 10^{-10}$$

- Very high event rates required!
- Detectors have to be able to cope with high particle rates and corresponding large amounts of data
- They have to be able to select ("trigger on") interesting events

Detector Requirements

- Conditions at LHC:
 - Bunch crossing rate: 40 MHz (each 25 ns)
 - Design Luminosity:

 $L = 10^{34} cm^{-2} s^{-1}$

• pp - cross section: $\sigma_{pp} \approx 100 \, mb \, = \, 10^{-25} \, cm^2$

Detector Requirements

- Conditions at LHC:
 - Bunch crossing rate: 40 MHz (each 25 ns)
 - Design Luminosity:

- $L = 10^{34} cm^{-2} s^{-1}$
- pp cross section: $\sigma_{pp} \approx 100 \, mb \, = \, 10^{-25} \, cm^2$
- Interaction rate ~ 1 GHz, approx. 25 p+p reactions per bunch-crossing

Detector Requirements

- Conditions at LHC:
 - Bunch crossing rate: 40 MHz (each 25 ns)
 - Design Luminosity:
 - pp cross section:

 $L = 10^{34} cm^{-2} s^{-1}$

$$\sigma_{pp} \approx 100 \, mb \, = \, 10^{-25} \, cm^2$$

Interaction rate ~ 1 GHz, approx. 25 p+p - reactions per bunch-crossing

Detector requirements:

- high granularity to resolve high particle density
- Fast readout, data buffering directly on detector ("pipelines"), typically 128 BX deep
- Needs a fast decision, if an event is interesting and should be read out for further processing: a maximum of 3.2 µs to decide
- High granularity results in high data volume: Maximum rate that can be stored ~ 100 Hz im Trigger and DAQ later in the series!

LHC: Extreme Conditions

Z -> $\mu\mu$... and 25 other collisions

LHC: Extreme Conditions

AL+ Dyatt

- Detection of the final-state particles of the interaction
 - Signals generated via electromagnetic interaction with the detector material

- Detection of the final-state particles of the interaction
 - Signals generated via electromagnetic interaction with the detector material

Tracker: Momentum of charged particles via precise measurement of deflection in magnetic field

- Detection of the final-state particles of the interaction
 - Signals generated via electromagnetic interaction with the detector material

Tracker: Momentum of charged particles via precise measurement of deflection in magnetic field Calorimeters: Energy measurement for photons, electrons and hadrons by total absorption

Tracker: Momentum of

precise measurement of

deflection in magnetic

charged particles via

- Detection of the final-state particles of the interaction
 - Signals generated via electromagnetic interaction with the detector material

Calorimeters: Energy

measurement for

absorption

photons, electrons

and hadrons by total

Muon detectors: Identification and precise momentum measurement outside of the main magnet

Neutron

Rioton

Photon

Electron

field

1. Vertex Tracker as close as possible to interaction point: Identification of secondary decays, for example from b-Quarks

- 1. Vertex Tracker as close as possible to interaction point: Identification of secondary decays, for example from b-Quarks
- 2. Main Tracker: Measurement of location and momentum of all charged particles, some times also with particle ID

- 1. Vertex Tracker as close as possible to interaction point: Identification of secondary decays, for example from b-Quarks
- 2. Main Tracker: Measurement of location and momentum of all charged particles, some times also with particle ID
- 3. Particle ID: Time-of-flight measurement, Cherenkov detectors,... (optional)

- 1. Vertex Tracker as close as possible to interaction point: Identification of secondary decays, for example from b-Quarks
- 2. Main Tracker: Measurement of location and momentum of all charged particles, some times also with particle ID
- 3. Particle ID: Time-of-flight measurement, Cherenkov detectors,... (optional)
- 4. Calorimeter (electromagnetic, hadronic): Energy measurement of charged and neutral particles

- 1. Vertex Tracker as close as possible to interaction point: Identification of secondary decays, for example from b-Quarks
- 2. Main Tracker: Measurement of location and momentum of all charged particles, some times also with particle ID
- 3. Particle ID: Time-of-flight measurement, Cherenkov detectors,... (optional)
- 4. Calorimeter (electromagnetic, hadronic): Energy measurement of charged and neutral particles
- 5. Muon Detectors: Improved tracking and identification of muons

- 1. Vertex Tracker as close as possible to interaction point: Identification of secondary decays, for example from b-Quarks
- 2. Main Tracker: Measurement of location and momentum of all charged particles, some times also with particle ID
- 3. Particle ID: Time-of-flight measurement, Cherenkov detectors,... (optional)
- 4. Calorimeter (electromagnetic, hadronic): Energy measurement of charged and neutral particles
- 5. Muon Detectors: Improved tracking and identification of muons
- 1. 3. have to be inside of a magnet to measure momentum

- 1. Vertex Tracker as close as possible to interaction point: Identification of secondary decays, for example from b-Quarks
- 2. Main Tracker: Measurement of location and momentum of all charged particles, some times also with particle ID
- 3. Particle ID: Time-of-flight measurement, Cherenkov detectors,... (optional)
- 4. Calorimeter (electromagnetic, hadronic): Energy measurement of charged and neutral particles
- 5. Muon Detectors: Improved tracking and identification of muons
- 1. 3. have to be inside of a magnet to measure momentum
- Ideally also include the calorimeters inside of the magnet to limit (dead) material in front of the detectors

- 1. Vertex Tracker as close as possible to interaction point: Identification of secondary decays, for example from b-Quarks
- 2. Main Tracker: Measurement of location and momentum of all charged particles, some times also with particle ID
- 3. Particle ID: Time-of-flight measurement, Cherenkov detectors,... (optional)
- 4. Calorimeter (electromagnetic, hadronic): Energy measurement of charged and neutral particles
- 5. Muon Detectors: Improved tracking and identification of muons
- 1. 3. have to be inside of a magnet to measure momentum
- Ideally also include the calorimeters inside of the magnet to limit (dead) material in front of the detectors
- 6. A big (and strong) magnet!

Detector Systems at Hadron Colliders

Collider Detectors: Cross Section [CMS]

- The high energies require high magnetic fields and large detectors
- Here: CMS, where the "C" is for "compact"

CMS: The Heavy Weight

Ar Aratt

CMS

Particles in ATLAS

ATLAS: The biggest Detector in Particle Physics

ATLAS

Basics of Particle Detection: Interaction with Matter

Energy Loss in Matter: Bethe-Bloch

• The Bethe-Bloch Formula describes energy loss by ionization

- Applicable in intermediate energy range
 - Atomic effects at low energies and Bremsstrahlung at high energies separately
- Z/A dependence: large energy loss in H
- 1/β² at low momenta: Heavy particles loose more energy
- Minimum at p/m ~ 3-4: minimum ionizing particle MIP
- logarithmic rise for high momentum
- Density effect due to polarization of medium

Material Dependence of Energy Loss

1-2 MeV g⁻¹ cm² (exception: H)

- Bethe-Bloch only gives the mean value!
- Energy loss is a statistical process

- Bethe-Bloch only gives the mean value!
- Energy loss is a statistical process

On the microscopic level: discrete scatterings, leading to ionization

Depending on the momentum transfer, a single or multiple free electrons are created

- Bethe-Bloch only gives the mean value!
- Energy loss is a statistical process

On the microscopic level: discrete scatterings, leading to ionization

- Depending on the momentum transfer, a single or multiple free electrons are created
- → Distinguishing primary and secondary ionization:

secondary ionization

- originating from high-energy primary electrons
- Sometimes the energy is sufficient for a clearly visible secondary track: δ electron

- Bethe-Bloch only gives the mean value!
- Energy loss is a statistical process

On the microscopic level: discrete scatterings, leading to ionization

- Depending on the momentum transfer, a single or multiple free electrons are created
- Distinguishing primary and secondary ionization:

secondary ionization

- originating from high-energy primary electrons
- Sometimes the energy is sufficient for a clearly visible secondary track: δ electron

total ionization = primary ionization + secondary ionization

In gases (STP) typically 30 primary reactions per cm, 90 electrons per cm

• Example for a delta electron in a bubble chamber: clearly visible range!

Energy Loss in Thin Layers

- The large range of the energy loss in individual reactions results in large variations of the energy loss in thin detectors:
 - A broad maximum: Collisions with relatively small energy loss
 - A long tail to high energy loss: few collisions with large energy loss, δ electrons

Energy Loss in Thin Layers

- The large range of the energy loss in individual reactions results in large variations of the energy loss in thin detectors:
 - A broad maximum: Collisions with relatively small energy loss
 - A long tail to high energy loss: few collisions with large energy loss, δ electrons

WS 14/15, 02: Detectors I

Photons: Interactions

 $2 m_e = ~1.022 \text{ MeV}$

Photons: Interactions

energy threshold: 2 $m_e = \sim 1.022 \text{ MeV}$

In contrast to dE/dx for charged particles:
 "All or nothing" reactions

Photons: Interactions

energy threshold: 2 $m_e = \sim 1.022 \text{ MeV}$

 In contrast to dE/dx for charged particles: "All or nothing" reactions

→ Reduction of photon intensity when traversing matter:

$$I(x) = I_0 e^{-\mu x}$$

Photons in Matter

Electrons: Energy Loss

- The relevant length scale: one radiation length
 - Describes high-energy electrons and photons (Energy loss via Bremsstrahlung and. e⁺e⁻ - pair creation, respectively)

- The relevant length scale: one radiation length
 - Describes high-energy electrons and photons (Energy loss via Bremsstrahlung and. e⁺e⁻ - pair creation, respectively)
 - Defined as the amount of matter that has to be traversed such that
 - an electron loses all but 1/e of its energy via Bremsstrahlung
 - 7/9 of the mean free path for pair creation for high-energy photons

- The relevant length scale: one radiation length
 - Describes high-energy electrons and photons (Energy loss via Bremsstrahlung and. e⁺e⁻ - pair creation, respectively)
 - Defined as the amount of matter that has to be traversed such that
 - an electron loses all but 1/e of its energy via Bremsstrahlung
 - 7/9 of the mean free path for pair creation for high-energy photons

empirical:
$$X_0 = \frac{716.4 A}{Z(1+Z) \ln(287/\sqrt{Z})} \frac{g}{cm^2} \propto \frac{A}{Z^2}$$

- The relevant length scale: one radiation length
 - Describes high-energy electrons and photons (Energy loss via Bremsstrahlung and. e⁺e⁻ - pair creation, respectively)
 - Defined as the amount of matter that has to be traversed such that
 - an electron loses all but 1/e of its energy via Bremsstrahlung
 - 7/9 of the mean free path for pair creation for high-energy photons

empirical:
$$X_0 = \frac{716.4 A}{Z(1+Z) \ln(287/\sqrt{Z})} \frac{g}{cm^2} \propto \frac{A}{Z^2}$$

• Also relevant for the description of multiple coulomb scattering

- The relevant length scale: one radiation length
 - Describes high-energy electrons and photons (Energy loss via Bremsstrahlung and. e⁺e⁻ - pair creation, respectively)
 - Defined as the amount of matter that has to be traversed such that
 - an electron loses all but 1/e of its energy via Bremsstrahlung
 - 7/9 of the mean free path for pair creation for high-energy photons

empirical:
$$X_0 = \frac{716.4 A}{Z(1+Z) \ln(287/\sqrt{Z})} \frac{g}{cm^2} \propto \frac{A}{Z^2}$$

- Also relevant for the description of multiple coulomb scattering
- Is usually given in g/cm², typical values:
 - Air: 36.66 g/cm², corresponds to \sim 300 m
 - Water: 36.08 g/cm², corresponds to ~ 36 cm
 - Aluminium: 24.01 g/cm², corresponds to 8.9 cm
 - Tungsten: 6.76 g/cm², corresponds to 0.35 cm

Methods of Particle Detection

Ionization Chamber: A Classic

WS 14/15, 02: Detectors I

Teilchenphysik mit höchstenergetischen Beschleunigern:

500

Voltage, volts

250

0

1000

Geiger-Müller

IV

Discharge

region

750

Region of

limited proportionality

Spatial Resolution

- Multi-Wire
 Proportional
 Counter MWPC
- G. Charpak 1968 (NP 1992)

Spatial Information through Timing: Drift Chamber

Fig. 6.16. Drift chamber design using interanode field wires (from Breskin et al. [6.22])

- If the time of passage of a particle is known from external measurements (trigger!) one can determine the location based on the arrival time of the charge cloud at the anode wire
- Prerequisite: Field distribution, and through that also drift velocity profile in gas volume well known

Cylindrical Drift Chamber for Collider Detectors

Solenoidal magnetic
 field for momentum
 measurement parallel to
 chamber wires

Abb. 4.41 Prinzipieller Aufbau einer zylindrischen Driftkammer. Die Abbildung zeigt einen Schnitt durch die Kammer senkrecht zu den Drähten.

Semiconductor Detectors: PN Junction

- By combining silicon with different dopants you get a PN junction
 - Donor (e.g. Phosphorus) provides electrons: n-doping
 - Aceptor (e.g. Boron) provides holes: p-doping
 - The charge excess gets neutralized on contact, a depletion zone and a corresponding electric field develops at the junction

Semiconductor Detectors: Charge Collection

- An external bias voltage increases the depletion zone by removing all charge carriers
- Created electrons and holes move to the contacts without recombining with the Si: development of a signal

- Through-going particles produce electron-hole pairs (in Si: 3.6 eV required per pair, for comparison: 20 eV - 40 eV in gas)
 - The high density and low ionization threshold allows to build compact detectors with excellent spatial resolution

Semiconductor Strip Detectors

Fig. 10.16. Layout of a micro-strip detector and readout strips (from *Hyams* et al. [10.14])

Scintillators

Scintillation Detectors

Fig. 9.7. The *twisted* light guide. Many strips of light guide material are glued on to the edge of the scintillator and then twisted 90° so as to fit onto the PM face

- Classical principle: Detection of scintillation light with photo multipliers
 - today these are more and more replaced by silicon-based photon detectors
 - Scintillators (in particular plastic scintillators) provide a fast signal, ideal for trigger detectors

Other Methods for Particle Detection

- Almost no limit for your creativity

 Various effects originating from the interaction of particles with matter can be exploited:
 - Cherenkov light for the accurate measurement of particle velocity
 - Transition radiation for velocity measurement

Abb. 6.22 Prinzipieller Aufbau eines Übergangsstrahlungsdetektors.

Energieverlust -dE/dx [keV/cm Xe]

Abb. 6.23 Prinzipieller Verlauf der Häufigkeitsverteilung des Energieverlustes hochenergetischer Elektronen für einen Übergangsstrahlungsdetektor mit Radiator und "Ersatzradiator" (nach [143]).

Summary

- Detector systems at colliders detect stable and long-lived particles Observables are energy, momentum, time of flight; tracks and secondary vertices and particle identification
- A central component of all detectors is the magnetic field Solenoids are standard, but other solutions are used as well
- The most commonly used mechanism is ionization by charged particles
 - Described by the Bethe-Bloch Equation
- Many different techniques are used for particle detection
 - Gas-filled ionization chambers, multi-wire chambers and drift chambers
 - Semiconductor detectors
 - Scintillators
 - Transition radiation detectors, Cherenkov detectors, ...

Summary

- Detector systems at colliders detect stable and long-lived particles Observables are energy, momentum, time of flight; tracks and secondary vertices and particle identification
- A central component of all detectors is the magnetic field Solenoids are standard, but other solutions are used as well
- The most commonly used mechanism is ionization by charged particles
 - Described by the Bethe-Bloch Equation
- Many different techniques are used for particle detection
 - Gas-filled ionization chambers, multi-wire chambers and drift chambers
 - Semiconductor detectors
 - Scintillators
 - Transition radiation detectors, Cherenkov detectors, ...

Next Lecture: Detectors II, F. Simon, 20.10.2014

Zeitplan

1.	Einführung; Stand der Teilchenphysik	06.10.
2.	Teilchendetektoren an Tevatron und LHC (I)	13.10.
3.	Teilchendetektoren an Tevatron und LHC (II)	20.10.
4.	Hadronenbeschleuniger: Tevatron und LHC	27.11.
5.	Monte Carlo Generatoren und Detektor Simulation	03.11.
6.	Trigger, Datennahme und Computing	10.11.
7.	QCD, Jets, Strukturfunktionen	17.11.
8.	Standard-Modell Tests	24.12.
9.	Higgs I	01.12.
10.	Higgs II	08.12.
11.	Top Physics	15.12.
	No Lecture	22.12.
	Christmas — — — — — — — — — —	
12.	Supersymmetry	12.01.
13.	Exotica / LHC Pläne	19.01.
14.	Future Collider Projects	26.01.

