

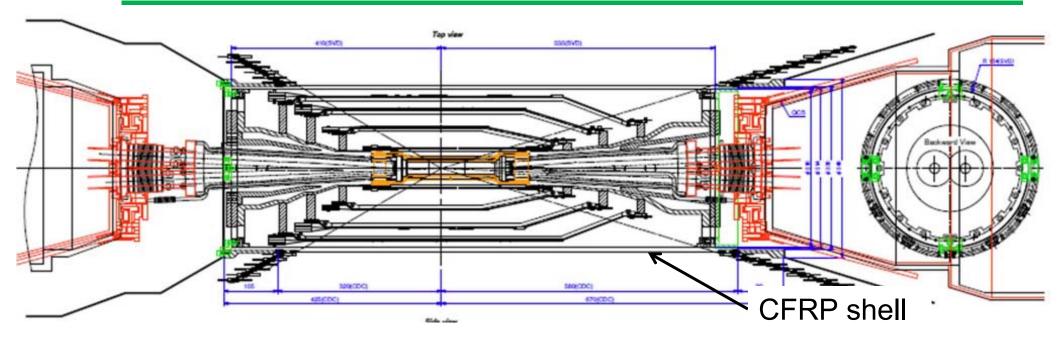
IBBelle Meeting @ MPI 6.-7. 10. 2014

Agenda:

- Overview of Cooling Requirements
- Services for IBBelle
- Container Option
- Acceptance Tests for CO2 Parts
- System Tests
- Parts Lists for IBBelle, Documentation
- MARCO Pumps

KEK: Nobuhiro Kimura, Shuji Tanaka, Toru Tsuboyama

NIKHEF: Bart Verlaat


CERN: Lukasz Zwalinski

DESY: Reimer Stever, Carsten Niebuhr (both via SeeVogh)

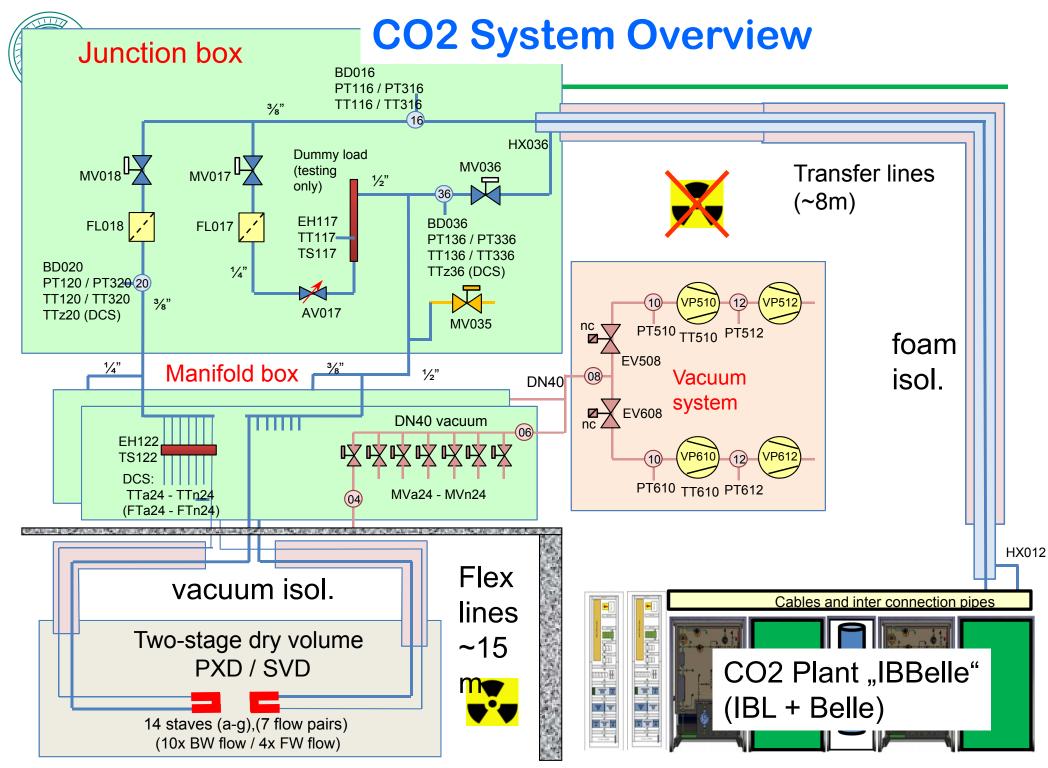
MPI: Hans-Günther Moser (parttime), Sven Vogt, Tscharlie Ackermann, Christian Kiesling

IR Region and Silicon Systems ("VXD")

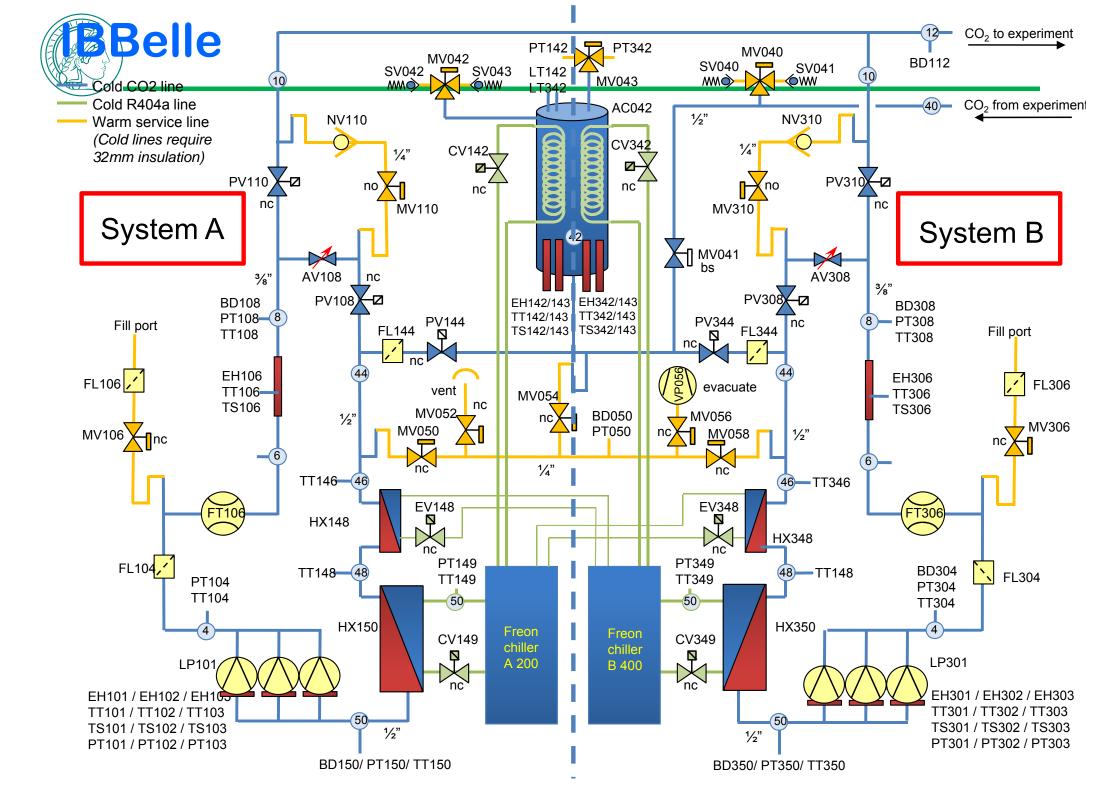
- Cooling of Si systems necessary (Si: shot noise, ASICs: electro-migration)
- The VXD (PXD + SVD) is a mechanical unit, dimensions defined by the cylindrical CFRP shell and the end flanges.
- Installed into Belle II as a unit together with the beampipe (+crotched part)
- needs to be thermally isolated against the CDC (room temp.) and the beampipe (15 °C).

- Minimize material in acceptance region
- SVD requirements:

coolant temperature for APV25 @ -20°C for SNR improvement total dissipated power ~ 700 W


PXD requirements:

sensor temp. < 25°C, ASICs < 50°C : cooling block @ <-20°C dissipated power ~ 360 W


- Cooling power ~ 1.6 kW at VXD (incl. ~ 540 W parasitic heat influx) have to add heat loss through 15 m of transfer lines → ~ 2-3 kW
- Nitrogen Volume:

dew point inside VXD volume: ~ -30 °C

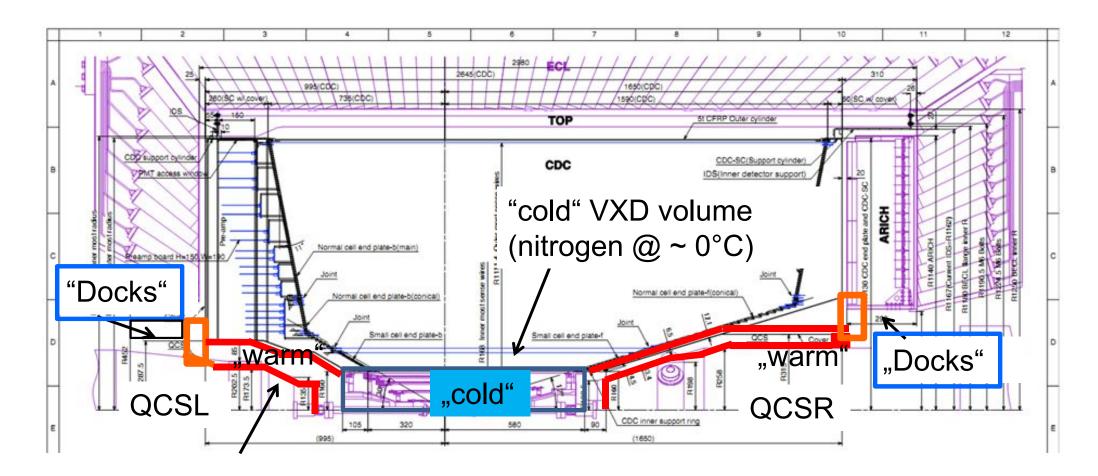
 Outside of VXD: room temperature (~23°C) at the CDC may need a thermal enclosure towards CDC, well insulated

C. Kiesling, CO2 Meeting, MPI, Oct. 6 - 7. 2014

Commissioning of IBBelle at CERN

Installation at CERN (ATLAS Experiment): the "twin" of IBBelle

Accum. rack



Construction of IBBelle (ATLAS) is finished

Commissioning with dummy heat load, now connected to IBL

Some problems getting down to -40°C (not important for the Belle version)

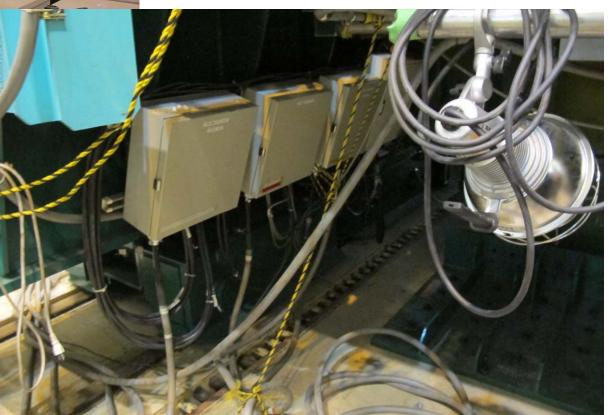
"warm" volumes between QCS and CDC inner wall, up to CDC end wall, both in FWD and BWD directions.

Use of nitrogen mandatory (potential hazard by oil from dry air supplier)

Cooling Lines for SVD & PXD: Details

CO ₂ Circuit	Detector	Half	Layer	Type Side Powe		Power [W]	
1			1&2	endring	bwd	90	
2	PXD	up	1&2	endring	fwd	90	
3	FAD	down	1&2	endring	bwd	90	
4			1&2	endring	fwd	90	
	sum PXD 360 left 3-6 endring bwd 93 right 3-6 endring bwd 93						
5		left	3-6	endring	bwd	93	
6		right	3-6	endring	bwd	93	
7		left	3-6	endring	fwd	93	
8	SVD	right	3-6	endring	fwd	93	
9	570	left	4&5	origami	bwd	68	
10		right	4&5	origami	bwd	68	
11		left	6	origami	bwd	96	
12		right	6	origami	bwd	96	
	700						
	SVDleft4&5origamibwd68right4&5origamibwd68left6origamibwd96right6origamibwd96						

Services (Power) for IBBelle



AC Power for CO2 System:

400 V 3-phase power line in Tsukuba Hall (2 x 25 kW) circuit breaker @ 60 A

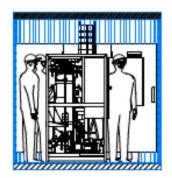
IBBelle needs also 220 V, should be derived close to the unit

Request European standard (+ zero and ground), will be provided by KEK

Services for IBBelle

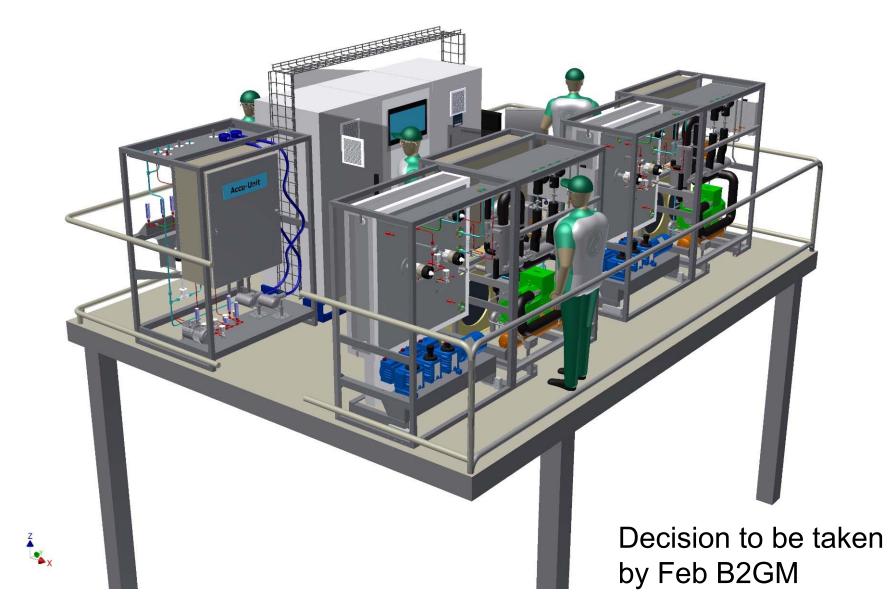
- European standard existed already at KEK, needs to be reactivated
- Requirement: 400 [V] ± 10 %
 (filtering of V spikes required, Shuji will inquire supply specs)
- Water for the chiller cooling: 20 l/min, room temp OK, only filter needed, connections to be specified
- N2: 50 I/min room temp OK

 \rightarrow List will be established on all required services , together with location of supply units, fixations etc.


Due date: coming B2GM

Location: Alternative Arrangement

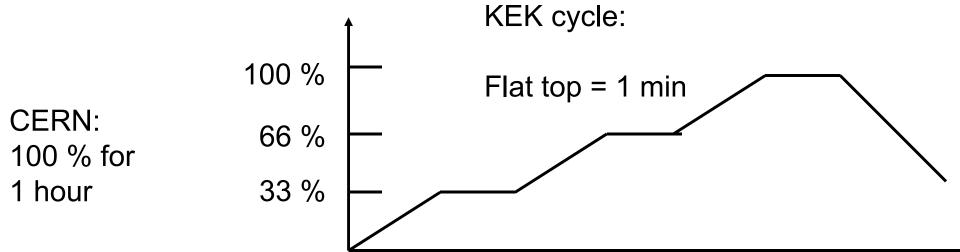
B-B (1:20)



Advantage: unit can be assembled at MPI, no need to take it apart for transport, no reassembly

Potential problems: need water/electricity outside hall Need to air condition the container

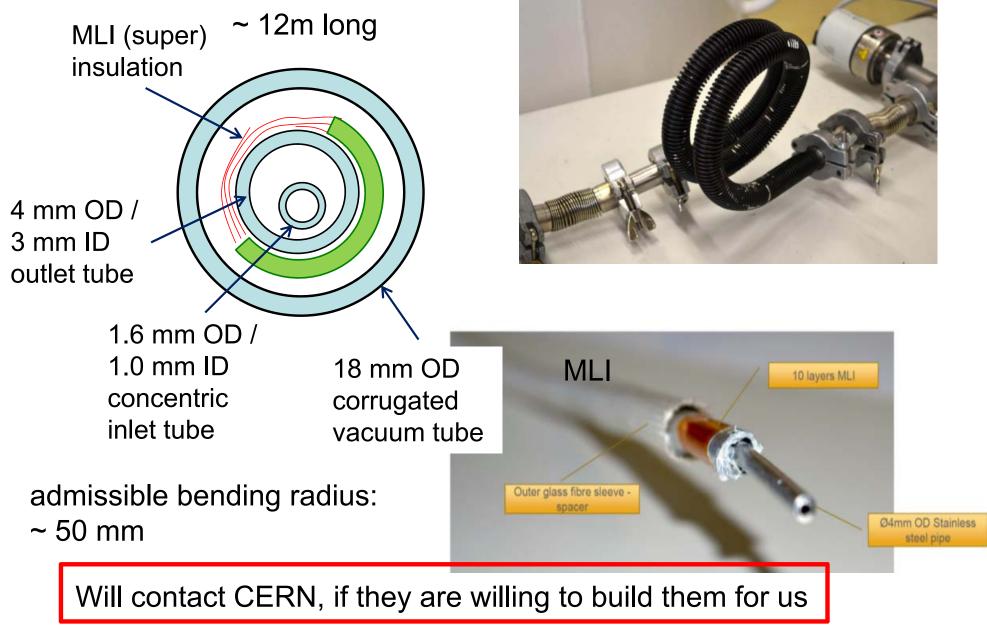
- The container would be located outside of Tsukuba Hall
 Preferred place : Behind Tsukuba hall (but: need access way)
- Transfer line into Belle II is ~ 50 m, i.e. OK, hydrostatic pressure difference will not pose a problem (cit. Bart)
- Japanese earthquake regulations:
- Container MUST be inside a "house" (=garage)
 Advantage: take away walls of the container, excellent accessibility
 "Garage" will be air conditioned (no special isolation for container)
- Gemba meeting during B2GM on IBBelle location, decision in Feb 15



Certification via German TÜV

Parts: mostly CE Standard (valves etc.)

- Pressure test with one sample to 300 bar, leak OK, but no burst
- Standard for tubing: 186 bar for all certified equipment (130 x 1.43)


```
Safety valve: 110 bar
Burst disk: 130 bar
```


Flex line design (by CERN/NIKHEF)

IBBelle Prototype: "MARCO"

MARCO ran successfully during the DESY Beam Test in Jan. 2014

Will be heavily used in the thermal mockup

Problems with the gear pump, but spare parts (pump heads) are existing.

Still worry about long-term testing: Need a different pump (membrane)

Candidate: HNC pump (15 kEur), software change needed, help by CERN indicated

Schedule for the CO2 Plant

(modified) IBBelle Part list		2nd Q 14	3rd Q 14	4th Q 14	1st Q 15	2nd Q 15	3rd Q 15	4th Q 15	1st Q 16	2nd Q 16
IBBelle	Part list									
	Tendering Orders									
	Construction									
	Commissioning									
	Transport to KEK									
	Installation at KEK									
Junction Box	Design									
	Construction									
	Test									
	Installation									
Manifolds	Design									
	Construction									
	Test									
	Installation									
Transfer lines	Design									
indisiter lines	Construction								†	<u> </u>
	Test								†	
	Installation								IRR	elle a
								<u> </u>		
Cold Air / N2	Design								KEk	(in
	Construction								- summer	
	Test									
									201	6
System Integration	at MPI									
	at KEK									

Conclusion on electrical parts: all questions answered (session between Lukasz and Reinhard)

Conclusion on mechanical parts: questions solved (session between Bart and Sven)

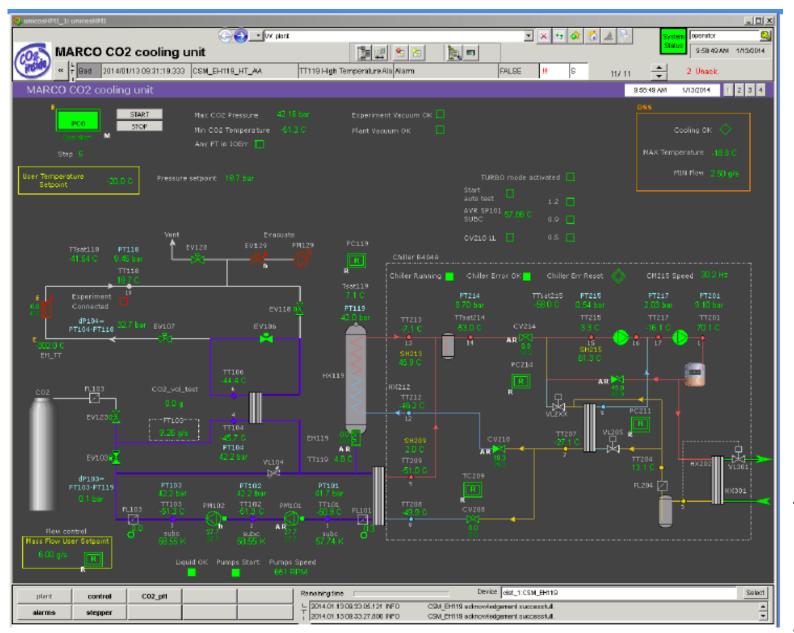
We can order via CERN (legal issues checked)

So far ordered:

26.0 kEur electronic parts 86.5 kEur pumps, Swagelok parts

Financial contributions from SVD colleagues are coming in (still to be solved: agreement with KEK)


Need to investigate container solution


- Training envisaged with the ATLAS instance of IBBelle at CERN (look for crew: MPI / DESY / KEK
- Translation from PVSS to EPICS (should not be a problem, according to the experts)
- Commissioning with the help of Jan Godlewski et al joined by Japanese engineers from KEK cryo group
- In case of Container Solution: No disassembly, "easy" start of operation at KEK
- Important: prepare Wiki Page with documentation
 To be done on MPI server, with link in KEK Wiki page

Goal: First version for November B2GM

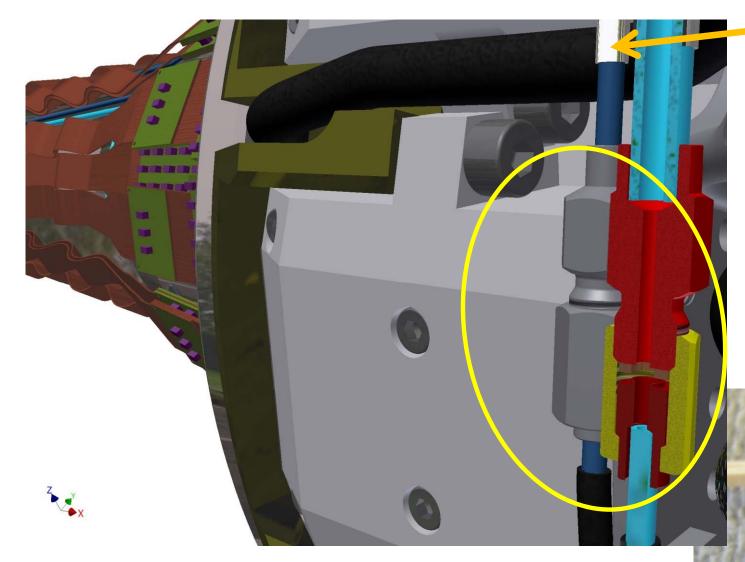
PVSS GUI for IBBelle

PVSS sets operation points (T, CO2 flux) and monitors the operation

Supervising layer (+GUI) will be re-written in EPICS / CSS (man power earmarked)

All critical control / operation functions are formulated in PLC and will not be touched

- Lead institute (main responsibility): MPI Munich Collaborating institutes: DESY + SVD (Vienna?)
- Installation at KEK: MPI, DESY, SVD (= "VXD") + KEK
- Commissioning: VXD + KEK
- Agreement with KEK (Nov. 13 B2GM meeting):
 - KEK will operate and monitor IBBelle standard service tasks executed by KEK (e.g. filter cleaning, replacement of spare parts)
 - major failures will require action by VXD crew



Backup

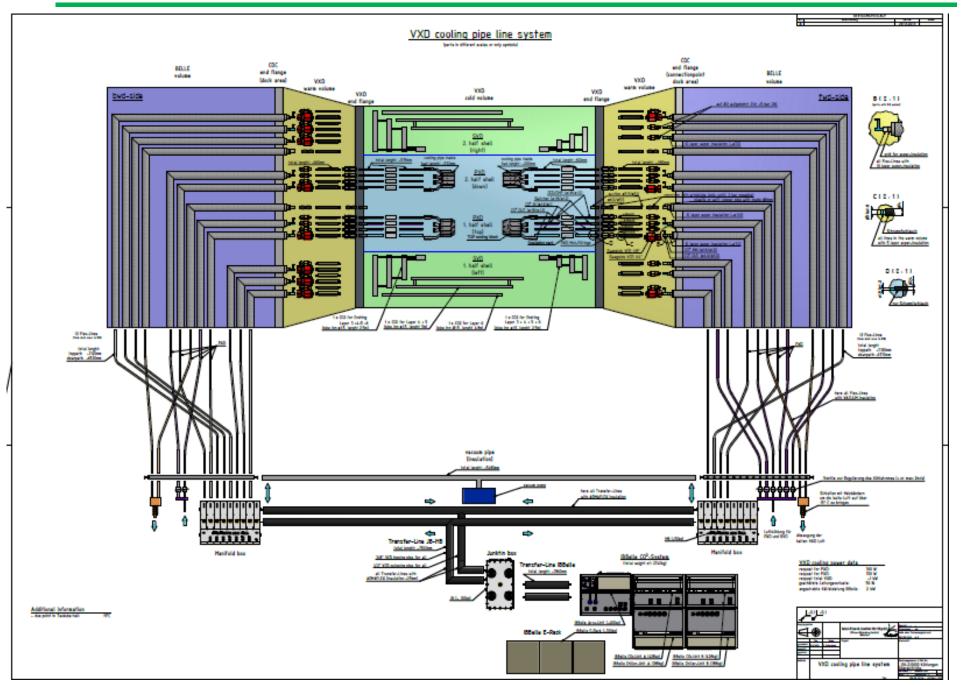
CO2 Micro Connections after the VXD Flange

Super-insulated CO2 lines

Custom-made micro connector : 5mm

pipe and connector required to stand 300 bar (KEK safety)

connectors


ed, e.g., in CMS),8/02/2013

CO2 pipes super-insulated outside the VXD flange and the volume between QCS and CDC

Schematics of Piping Layout

C. Kiesling, CO2 Meeting, MPI, Oct. 6 - 7. 2014