

Search for top squarks using spin correlation with the ATLAS experiment

Nicolas Köhler (TUM)

Max-Planck-Institute for Physics (Werner-Heisenberg-Institut)

November 10th, 2014

Introduction to Supersymmetry

- Symmetry between fermions and bosons
- No sparticles observed so far → broken symmetry
- Introduce R-parity conservation to avoid proton decay → lightest supersymmetric particle (LSP) is stable
- Neutral LSP is ideal dark matter candidate

- SUSY close to TeV energy scale is one way to resolve the hierarchy problem
- Top squarks could be lighter, $\mathcal{O}(m_{\tilde{t}}) \approx \text{TeV}$, than other squarks and gluinos
- LHC had center-of-mass energy of $\sqrt{s} = 8 \text{ TeV} (2012)$
- ightarrow Sensitivity up to top squark masses of

- A variety of top squark decays is possible, depending on the SUSY particle mass spectrum
- There are 2 main top squark pair production and decay processes have been explored by ATLAS:

from CERN-PH-EP-2014-143

from CERN-PH-EP-2014-014

Recent exclusion limits from ATLAS Challenges of $\tilde{t} \rightarrow t + \tilde{\chi}_1^0$ search:

- Cross section for top squark production decreases with increasing top squark masses
- Light top squarks (i.e. $m_{\tilde{t}} \approx m_t \rightarrow m_{\tilde{\chi}_1^0} \approx 0$) not excluded, since signature is very similar to $t\bar{t}$ production
- For $t\bar{t}$ decays into 2 leptons $\ell \in \{e, \mu\}$: small $\mathcal{BR}(W^+W^- \to \ell^+\ell^-\nu_\ell\bar{\nu_\ell})$ $= \frac{4}{81}$

Nov. 10th, 2014

Spin correlation in $t\bar{t}$ production at the LHC

Top quarks are mainly produced via gluon fusion at the LHC

- Mahlon, Parke (arXiv:1001.3422v2 [hep-ph]): At LHC energies, the collision of gluons with the same helicity is dominant and therefore the production of same-helicity *tt* pairs dominates.
- Simplified picture:

TAn Asizett

Spin correlation in $t\bar{t}$ production at the LHC

Top quarks are mainly produced via gluon fusion at the LHC

- Mahlon, Parke (arXiv:1001.3422v2 [hep-ph]): At LHC energies, the collision of gluons with the same helicity is dominant and therefore the production of same-helicity *tt* pairs dominates.
- Simplified picture:

Spin correlation in $t\bar{t}$ production at the LHC Top quarks are mainly produced via gluon fusion at the LHC

- Mahlon, Parke (arXiv:1001.3422v2 [hep-ph]): At LHC energies, the collision of gluons with the same helicity is dominant and therefore the production of same-helicity *tt* pairs dominates.
- Simplified picture:

 \rightarrow Here, the leptons have the same direction of flight

 \rightarrow Direction of flight of decay leptons is sensitive to spin correlation of $t\bar{t}$ pairs Nov. 10th, 2014 Nicolas Köhler - Search for top squarks with ATLAS 5 / 14

Measurement of the azimuthal dilepton opening angle $\Delta\phi$

- Mahlon, Parke: $t\bar{t}$ spin correlations can be detected in the distribution of the azimuthal angle difference $\Delta \phi$ in the laboratory frame of the two leptons from semileptonic *t* and \bar{t} decays

Results 000

Spin correlation measurements

- First $t\bar{t}$ spin correlation measurement in ATLAS performed with $\mathcal{L} = 4.6 \ \text{fb}^{-1}$ of data from 2011 at a center-of-mass energy of $\sqrt{s} = 7 \text{ TeV}$
- Good agreement with SM prediction
- → Since top squarks are scalar particles, there spins are uncorrelated

→ Measure $\Delta \phi$ distribution of lepton pairs (e⁺e⁻, $\mu^+\mu^-$, e[±] μ^\mp) with $\mathcal{L} = 20.3 \text{ fb}^{-1}$ of data taken 2012 at a center-of-mass energy of $\sqrt{s} = 8$ TeV and compare with spin-1/2 $t\bar{t}$ -production → Sensitive to light top squarks

 $\mu^+\mu^-$ channel $E_{
m T}^{
m miss}=31.8~{
m GeV}$ $m_{\mu^+\mu^-}=119.8~{
m GeV}$

Nov. 10th, 2014

Results 200

 $\mu^+\mu^-$ channel $E_{
m T}^{
m miss}=31.8\,{
m GeV}$ $m_{\mu^+\mu^-}=119.8\,{
m GeV}$

 $\rightarrow \Delta \phi_{\mu^+\mu^-} = 1.559$

Results 000

- Exactly 2 opposite charged leptons: e^+e^- , $\mu^+\mu^-$ or $e^\pm\mu^\mp$
- At least two jets
- At least one of them has to be a *b*-jet
- Missing transverse energy $E_T^{\rm miss} > 30~{\rm GeV}$ for e^+e^- , $\mu^+\mu^-$
- $\label{eq:constraint} \begin{array}{l} \bullet \ Z\text{-veto:} \ |m_{\rm II}-m_z| > 10 \ {\rm GeV}, \\ \Upsilon\text{-} \ {\rm and} \ J/\psi\text{-veto:} \ m_{\rm II} > 15 \ {\rm GeV} \\ {\rm for} \ {\rm e}^+{\rm e}^-, \ \mu^+\mu^- \end{array}$
- $(Z \rightarrow \tau^+ \tau^- \rightarrow e^{\pm} \mu^{\mp})$ -veto: $H_T = \sum_{\text{lept}} p_T + \sum_{\text{jets}} p_T > 130 \text{ GeV}$ for $e^{\pm} \mu^{\mp}$

Results

- Exactly 2 opposite charged leptons: e^+e^- , $\mu^+\mu^-$ or $e^\pm\mu^\mp$
- At least two jets
- At least one of them has to be a *b*-jet
- Missing transverse energy $E_T^{\rm miss} > 30~{\rm GeV}$ for e^+e^- , $\mu^+\mu^-$
- $\label{eq:linear_states} \begin{array}{l} \mathbf{I} \ Z\text{-veto:} \ |m_{\rm II}-m_z| > 10 \ {\rm GeV}, \\ \Upsilon\text{- and} \ J/\psi\text{-veto:} \ m_{\rm II} > 15 \ {\rm GeV} \\ {\rm for} \ e^+e^-, \ \mu^+\mu^- \end{array}$
- $(Z \rightarrow \tau^+ \tau^- \rightarrow e^{\pm} \mu^{\mp})$ -veto: $H_T = \sum_{\text{lept}} p_T + \sum_{\text{jets}} p_T > 130 \text{ GeV}$ for $e^{\pm} \mu^{\mp}$

Results 000

- Exactly 2 opposite charged leptons: ${\rm e^+e^-},\,\mu^+\mu^-$ or ${\rm e^\pm}\mu^\mp$
- At least two jets
- At least one of them has to be a *b*-jet
- Missing transverse energy $E_T^{\rm miss} > 30~{\rm GeV}$ for e⁺e⁻, $\mu^+\mu^-$
- $\label{eq:constraint} \begin{array}{l} \bullet \ Z\text{-veto:} \ |m_{\rm II}-m_z| > 10 \ {\rm GeV}, \\ \Upsilon\text{-} \ {\rm and} \ J/\psi\text{-veto:} \ m_{\rm II} > 15 \ {\rm GeV} \\ {\rm for} \ {\rm e}^+{\rm e}^-, \ \mu^+\mu^- \end{array}$
- $(Z \to \tau^+ \tau^- \to e^{\pm} \mu^{\mp})$ -veto: $H_T = \sum_{\text{lept}} p_T + \sum_{\text{jets}} p_T > 130 \text{ GeV}$ for $e^{\pm} \mu^{\mp}$

Results 000

- Exactly 2 opposite charged leptons: e^+e^- , $\mu^+\mu^-$ or $e^\pm\mu^\mp$
- At least two jets
- At least one of them has to be a *b*-jet
- Missing transverse energy $E_T^{\rm miss} > 30~{\rm GeV}$ for e⁺e⁻, $\mu^+\mu^-$
- $\label{eq:constraint} \begin{array}{l} \bullet \ Z\text{-veto:} \ |m_{\rm II}-m_z| > 10 \ {\rm GeV}, \\ \Upsilon\text{-} \ {\rm and} \ {\rm J}/\psi\text{-veto:} \ m_{\rm II} > 15 \ {\rm GeV} \\ {\rm for} \ {\rm e}^+{\rm e}^-, \ \mu^+\mu^- \end{array}$
- $(Z \to \tau^+ \tau^- \to e^{\pm} \mu^{\mp})$ -veto: $H_T = \sum_{\text{lept}} p_T + \sum_{\text{jets}} p_T > 130 \text{ GeV}$ for $e^{\pm} \mu^{\mp}$

Results 000

- Exactly 2 opposite charged leptons: ${\rm e^+e^-},\,\mu^+\mu^-$ or ${\rm e^\pm}\mu^\mp$
- At least two jets
- At least one of them has to be a *b*-jet
- Missing transverse energy ${\it E}_{T}^{\rm miss}>30~{\rm GeV}$ for e⁺e⁻, $\mu^+\mu^-$
- Z-veto: $|m_{\rm II} m_z| > 10~{\rm GeV},$ Υ - and J/ ψ -veto: $m_{\rm II} > 15~{\rm GeV}$ for e⁺e⁻, $\mu^+\mu^-$
- $(Z \to \tau^+ \tau^- \to e^{\pm} \mu^{\mp})$ -veto: $H_T = \sum_{\text{lept}} p_T + \sum_{\text{jets}} p_T > 130 \text{ GeV}$ for $e^{\pm} \mu^{\mp}$

Results 000

- Exactly 2 opposite charged leptons: e^+e^- , $\mu^+\mu^-$ or $e^\pm\mu^\mp$
- At least two jets
- At least one of them has to be a *b*-jet
- Missing transverse energy ${\it E_T^{miss}}>30~{\rm GeV}$ for e⁺e⁻, $\mu^+\mu^-$
- Z-veto: $|m_{\rm II} m_z| > 10~{\rm GeV},$ Υ - and J/ ψ -veto: $m_{\rm II} > 15~{\rm GeV}$ for e⁺e⁻, $\mu^+\mu^-$
- $(Z \rightarrow \tau^+ \tau^- \rightarrow e^{\pm} \mu^{\mp})$ -veto: $H_T = \sum_{lept} p_T + \sum_{jets} p_T > 130 \text{ GeV}$ for $e^{\pm} \mu^{\mp}$

Results 000

Data - MC comparison (e⁺e⁻,
$$\mu^+\mu^-$$
 and e[±] μ^\mp merged)

$\Delta\phi$ distribution

all channels (e^+e^-, $\mu^+\mu^-$ and e^ $\pm\mu^{\mp}$ merged)

The main systematic uncertainties arise from:

- Jet energy resolution (normalisation)
- Jet energy scale (normalisation)
- Parton density functions (normalisation)
- MC generator (normalisation and shape)
- Renormalisation/factorisation scale used in MC (normalisation and shape)

$\Delta\phi$ distribution

all channels (e^+e^-, $\mu^+\mu^-$ and e^ $\pm\mu^{\mp}$ merged)

The main systematic uncertainties arise from:

- Jet energy resolution (normalisation)
- Jet energy scale (normalisation)
- Parton density functions (normalisation)
- MC generator (normalisation and shape)
- Renormalisation/factorisation scale used in MC (normalisation and shape)

 \rightarrow Agreement of data and simulation within the systematic uncertainties. Try to constrain possible signal models in the $m_{\tilde{t}}$ - $m_{\tilde{\chi}^0}$ plane.

Results O●O

Using a second variable in the fit

Non- $t\bar{t}$ backgrounds tend to have their maxima at lower $H_{\rm T}$ than the $t\bar{t}$ sample

Exclusion contour plot

Using a frequentist approach for calculating exclusion limits at 95% confidence limit:

- Repeated hypothesis tests are run in the m_t-m_{χ̃1} plane.
- By interpolation, get the line where CL_s value is equal to 0.05.
- The area below the red curve is excluded at 95% confidence limit.

Results 000

Summary

- Analysis to search for light top squarks using spin correllation
- No indication for top squarks found so far
- Kinematically challenging part of phase space excluded

Thank you for your attention!

Results 000

Summary

- Analysis to search for light top squarks using spin correllation
- No indication for top squarks found so far
- Kinematically challenging part of phase space excluded

Thank you for your attention!

BACKUP

Nov. 10th, 2014

Backup - Event selection

Channel	Same flavour	Mixed flavour
Leptons	exactly 2 oppositely charged leptons with $p_{\rm T} > 25~{\rm GeV}$ $p_{\rm T}^{\rm conc}/p_{\rm T} < 0.1$ for electrons, $p_{\rm T}^{\rm conc} < 1.8~{\rm GeV}$ for muons Triggers: e24vhi_medium1 for e^{\pm} , mu24i_tight for μ^{\pm}	
	e $^+$ e $^-$, $\mu^+\mu^-$	$e^\pm \mu^\mp$
Jets	≥ 2 jets with $\ensuremath{\textit{p}_{\rm T}}\xspace > 25\mbox{GeV}, \geq 1\mbox{b-jet}$	
Invariant mass	$ert m_{\ell\ell} - m_Z ert > 10 { m GeV}, \ m_{\ell\ell} > 15 { m GeV}$	-
Missing transverse energy	$\textit{E}_{\rm T}^{\rm miss} > 30{\rm GeV}$	-
Scalar sum of transverse momenta	-	${\rm H_T} > 130{\rm GeV}$

see also ATLAS-CONF-2013-101

additional event selection in SUSYTools-00-03-21

TPileupReweighting::SetDataScaleFactors(1./1.09) for nominal tree for jets: SUSYObjDef::IsTileTrip, SUSYObjDef::IsGoodJet, BCHTool, JVFcutNominal = 0.5

Backup Control regions

Estimate background contributions in specific regions of phase space and extrapolate to region of interest.

Nov. 10th, 2014

Backup - Setting exclusion limits

• Building probability density function (PDF): $\mathcal{P}(n, \mathbf{a}|\mu, \alpha) = \operatorname{Pois}(n|\nu) \cdot \prod_{i \in \operatorname{Syst}} N(a_i|\alpha_i, 1)$

 $\nu = \mu S(\alpha) + B(\alpha)$: expected events, *n*: observed events, $\mu = \frac{(\sigma \cdot BR)_{obs}}{(\sigma \cdot BR)_{SM}}$: signal strength, $N(a_i | \alpha_i, 1)$: normalisation distribution of systematic with nuisance parameter α_i and auxiliary measurement a_i

- Inserting data (*n*, a) into PDF $\mathcal{P}(n, a | \mu, \alpha) =: L(\mu)$ gives likelihood function \rightarrow Maximizing $L(\mu)$ gives signal strength μ and constrains nuisance parameters α
- Maximum likelihood ratio test method gives so-called p value (probability to observe a given signal strength caused by statistical fluctuations of SM background)

- Calculation of p values for each μ
- Exclude all signal strengths μ at 95 CL where p value is less than 0.05
- Expected exclusion limit: exclusion limit with
 - n = number of SM background events

Backup

Spin correlation in $t\bar{t}$ production at the LHC

Top quarks are mainly produced via gluon fusion at the LHC

- Mahlon, Parke (arXiv:1001.3422v2 [hep-ph])
 - -- Without orbital angular momentum: due to gluon fusion $t\bar{t}$ -pairs with the same helicity are dominant
 - -- Top quarks decay before they hadronize ($\Gamma_t > \Lambda_{QCD}$)
 - -- W boson has helicity 0 or ± 1
 - -- Direction of spin of top quark is related to direction of flight of lepton
- Spins of $t\bar{t}$ -pairs are correlated (fermions) while spins of $t\bar{t}$ -pairs are not

Backup Helicity of the W Bosons in $t\bar{t}$ decays

Backup Helicity of the W Bosons in $t\bar{t}$ decays

