

Munich, 10th November 2014

Influence of Biodiesel composition on morphology and microstructure of particles emitted from Diesel engines

Natascha Savić

Supervisor Team:

Prof. Zoran Ristovski, Dr. Branka Miljević

International Laboratory for Air Quality and Health, Queensland University of Technology, Australia

Prof. Thomas Leisner, Dr. Harald Saathoff

Institute for Meteorology and Climate Research- Atmospheric Aerosol Research, Karlsruhe Institute of Technology, Germany

a university for the real world®

Introduction

• Particle matter emitted by diesel engines primarily consists of soot.

- Chronic exposure to diesel exhaust particles may lead to cardiovascular, respiratory and pulmonary diseases →health effects most likely related to the particles' surface
- Emitted amount of particle matter can be decreased → by using alternative fuel such as biofuel
- Biodiesel is made of oilseed crops, plants and animal fat and can be used directly in conventional unmodified diesel engines

List of contents

Diesel exhaust particle

analysed by

Transmission Electron Microscopy (TEM)

Agglomerates

Primary Particles

X-ray Photoelectron Spectroscopy (XPS)

Chemical State Analysis

Determination of surface properties of particles from Diesel engines generated with different biofuel content by Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy

Expected scientific goals:

- i. Investigation of primary particle size and inner structure
- i. Investigation of fractal dimension
- ii. Investigation of surface functionalization

Set-up QUT Campaign

QUT Science and Engineering

Nanometer Aerosol Sampler

Science and Transmission Electron Microscope

January Campaign	February Campaign	March Campaign
Diesel	Diesel	Cotton seed oil (CSO)
Palm oil (PO C1214)	Algae	Waste cooking oil (WCO)

• All samples were collected at different blends example:

QUT Science and

Engineering

Outer Structure Analysis

QUT Science and Engineering

Fractal dimension characterizes how compact and spherical a particulate is.

Range of fractal dimension: 1-3 where 3 represents a spherical particle

S. Choi et al.: Review on characterization on nano particle emissions and PM morphology from internal combustion engines: Part 2

Analysis Fractal Dimension

1. method:	2. method:	
Box counting method: (2-dim)	Monte-Carlo simulation: (3-dim)	
 a.) Draws grids with decreasing box size b.) Curve plotting: log box number vs. log box size With the state of the 	a.) Conversion from 2 dimensional to 3 dimensional images b.) Curve plotting log particle number vs. log particle to primary particle ratio $N_P = k_L \left(\frac{L}{D_P}\right)^{D_F}$ Range: 1 to 3	
QUT Science and Engineering	a university for the real world [®] CRICOS No. 00213J	

Fractal Dimension Result Comparison

Sample	Diesel	Algae, B5	Algae, B50	Algae, B20	CSO, B20	WCO, B20
1. method	1.72±0.09	1.74±0.06	1.80±0.07	1.72±0.06	1.72±0.08	1.73±0.08
2. method	1.74±0.11	1.80±0.10	2.12±0.10	1.85±0.12	1.91±0.08	1.82±0.08
Literature	1.70±0.13			2.00±0.07		

→ Marked trend for both derived fractal dimensions to increase for increasing blends

→ 2. method was found to exceed the 1. method

Analysis: Primary Particle Size

Primary Particle Size Analysis

Summarized Primary Particle Size

Size Distribution

→ Higher biofuel content leads to smaller primary particles

QUT Science and Engineering

Inner Structure Analysis

CRICOS No. 00213J

Analysis: Inner Layer Structure

- 1. Fringe length
- 2. Degree of curvature (tortuosity)
- 3. Separation distance

Fringe Analysis

Display of 2 voxels within skeleton image:

- → fringe lengths
- → fringe end points
- → fringe tortuosity
 (software supported measurement)
- → fringe distance (manual measurement)

Summary Results: Inner Layer Structure

Biofuel is more amorphous and consequently more prone to oxidation

on the basis of:

- 1. Smaller fringe length
- 2. Higher fringe curvature
- 3. Larger mean fringe separation distance

➔ Soot emissions from engines run by biofuel compositions are significantly reduced

Science and Engineering X-ray Photoelectron Spectroscope

X-ray beam- irradiating

Samples-irradiated

XPS Chemical State Analysis

sp3/sp2 = organic/elemental carbon: higher ratio → more amorphous structure

→ Biodiesel shows more amorphous structure

CUT Science and

Engineering

QUT Science and Engineering

- Investigation of primary particle size of biodiesel and pure diesel samples by TEM
- → Biodiesel primary particles appear to be smaller
- Investigation of the fractal dimension by two methods
- → Higher fractal dimension for biofuel
- Investigation of the primary particle microstructure by TEM
- → Biodiesel graphene layers are more likely to be amorphous
- Chemical state analysis by XPS
- → More organic carbon (C-C sp3) in biofuel

No significant distinction in different feedstocks of biofuel

Summary

Thank you for your attention!

QUT Science and Engineering

- 1. M. Lapuerta, R. Ballesteros, F. J. Martos, 2006. A method to determine the fractal dimension of diesel soot agglomerates. Journal of Colloid and Interface Science 303, 149-158
- 2. T. Tzamkiozis, L. Ntziachristos, A. Mamakos, G. Fontaras, Z. Samaras, 2011. Aerodynamics and Mobility Size Distribution Measurements to Reveal Biodiesel Effect on Diesel Exhaust Aerosols, Aerosol Science and Technology, 587-595
- 3. J. Szybist, J. Song, M. Alam, A. Boehman, 2006. Biodiesel combustion, emissions and emission control, Fuel Processing Technology, 679-691
- 4. Md. N. Nabi, Md. M. Rahman, Md. S. Akhter, 2008. Biodiesel from cotton seed oil and its effect on engine performance and exhaust emissions, Applied Thermal Engineering 29, 2265-2270
- 5. R. Vander Wal, A. Tomasek, M. Pamphlet, C. Taylor, W. Thompson, 2004. Analysis of HRTEM images for carbon nanostructure quantification, Journal of Nanopartcle, 6:555-568
- 6. M. Wozniak, F. Onofri, S. Barbosa, J. Yon, J. Mrockza, 2012. Comparision of methods to derive morphological parameters of multi-fractal samples of particle aggregates from TEM images, 12-26
- 7. J. Radney, R. You, X. Ma, J. Conny, J. Hodges, M. Zachariah, C. Zangmeister, 2014. Dependence of Soot Optical Properties on Particle Morphology: Measurements and Model Comparisons, Environmental Science and Technology
- 8. M. Chandler, Y. Teng, U. Koylu, 2007. Diesel engine particulate emissions: A comparison of mobility and microscopy size measurements, Proceeding of the Combustion Institute, 2971-2979
- 9. C. Lim, M. Kang, J. Han, J. Yang, 2012. Effect of Agglomeration on the Toxicity of Nano-sized Carbon Black in Sprague-Dawley Rats, Environmental Health and Toxicity, Vol. 27
- 10. J. Rissler, et al., 2013. Effective Density Characterization of Soot Agglomerates from Various Sources and Comparison to Aggregation Theory, Aerosol Science and Technology, 795-805
- 11. N. Mustafi, R. Raine, 2009. Electron Microscopy Investigation of Particular Matter from Dual Fuel Engine, Aerosol Science and Technology, 43:951-960
- 12. M. Schabel, J. Martins, 1992. Energetics of interplanar binding in graphite, Physical Review B, V:46 N:11
- 13. P. Pham, T Bodisco, S. Stevanovic, M.D Rahman, H. Wang, Z.D. Ristovski, R.J Brown, A.R Masri, 2013. Engine Performance Characteristics for Biodiesels of Different Degrees of Saturation and Carbon Chain Length, SAE Int. J. Fuels Lubr., V:6, I:1
- 14. R. McDonald, P. Biswas, 2004. A Methodology to Establish the Morphology of Ambient Aerosols, National Institute of Health, 00169-1078
- 15. U.O. Kolylu, G. Faeth, T. Farias, M. Carvaloh, 1994. Fractal and Projected Structure Properties of Soot Aggregates
- 16. P. Sielicki, H. Janik, A. Guzman, J. Namiesnik, 2012. Grain type and size of particulate matter from diesel vehicle exhaust analysed by transmission electron microscopy, Environmental Technology, V:33, 1781-1788
- 17. A. Liati, A. Spiteri, P. Eggenschiler, N. Vogel-Schauble, 2012. Microscopic investigation of soot and ash particulate matter derived from biofuel and diesel: implications for the reactivity of soot, J Nanopart Res, 14:1224
- 18. K. Park, D. Kittelson, P. McHurry, 2004. Structural Properties of Diesel Exhaust Particles Measured by Transmission Electron Microscopy: Relationships to Particle Mas and Mobility, Aerosol Science and Technology, 38:881-889
- 19. M. Wentzel, H. Gorzawski, K. Naumann, H. Saathoff, S. Weinbruch, 2003. Transmission electron microscopical and aerosol dynamical characterization of soot aerosols, Journal of Aerosol Science, 1347-1370

20. http://www.ammrf.org.au/myscope/tem/practice/usingTEMs/settings/

Literature

Backup

Holey Carbon Grid

www.latech.com

www.scienceservices.de

TEM-Sample Holder

QUT Science and Engineering

Agglomerate Size Analysis by ImageJ

Sample: CSO B20, idle

QUT Science and

Engineering

Agglomerate Size Distribution

January Campaign : Log normal size distribution of Diesel and palm oil C1214

Pure biodiesel agglomerates are smaller than pure diesel ones

Inner Layer Structure

WCO B20, 50 % Load, UQ II

50 % Load,

a university for the real world" CRICOS No. 00213J

Examples of Fractal Dimension

➔ The smaller, the more spherical, the more compact the agglomerate is, the higher its fractal dimension

Primary Particle Size Distribution

example: Diesel, 50 % Load

example: Algae B50, 50 % Load

Inner Structure Analysis

- **Amorphous** structure of graphene layers
 - ➔ disordered structure

QUT Science and

Engineering

Algae B50

- **Graphitic** structure of graphene layers
 - → ordered structure

Diesel

→Biofuel is more likely to be amorphous

Fringe Characterization Results: Tortuosity

a.) example: Algae B50, 50 % Load

b.) example: Diesel, 50 % Load

→ Biodiesel fringes are more likely to be curved

Fringe Characterization Results: Distance

a.) example: Algae B50, 50 % Load

b.) example: Diesel, 50 % Load

Fringe distances <0.2 nm were discarded as artifacts

- → Diesel shows the closest value to the graphene layer distance of graphite (0.335 nm)
- → Fringe separation distances of biofuel appear to be larger

QUT Science and Engineering

Analysis: Fractal Dimension by Equation

a.) example: Diesel, all loads

- b.) example: Algae B50, all loads
- \rightarrow The Fractal dimension **D**_F is derived from the slope

QUT Science and Engineering

Introduction

 Previous research has been done on investigating the particle structure of diesel and biofuels by transmission electron microscopy

Kihong Park et al.: Structural Properties of Diesel Exhaust Particles Measured by Transmission Electron Microscopy: Relationships to Particle Mass and Mobility

Matti Happonen et al.: The Comparison of Particle Oxidation and Surface Structure of Diesel Soot Particles between Fossil Fuel and Novel Renewable Diesel Fuel

outer structure

inner structure

Introduction

- Only a small number of research has been done on the analysis of the inner AND the outer structure of diesel AND biodiesel by means of transmission electron microscopy
- None research has been done on the morphology of algal biofuel
- The physical properties of diesel particles and of biofuel particles of different feedstocks including algae will be investigated

Analysis: Fractal Dimension by ImageJ

Example Diesel, UQ I: a.) TEM-image, b.) converted into binary image

Fractal Dimension Results

Sample	Diesel,	Algae,	Algae,	Algae,	CSO,	WCO,
	B0	B5	B50	B20	B2O	B2O
FD Image J	1.72±0.09	1.74±0.06	1.80±0.07	1.72±0.06	1.72±0.08	1.73±0.08

- ➔ Higher values for the fractal dimensions for biodiesel
- ➔ Increase of fractal dimension for increasing blends

Analysis: Fractal Dimension by Equation

$$(N_P) = k_L \left(\frac{L}{D_P}\right)^{D_F}$$
$$N_P = k_\alpha \left(\frac{A_\alpha}{A_P}\right)^{\alpha}$$

Approach of Brasil to determined Fractal Dimension

Empirical correlation to obtain N_P

where D_F is the fractal dimension, N_P is the number of primary particles in the aggregate, L the maximum length of the aggregate, D_P the diameter of the primary particles

Oxygen Content in Biofuel

Primary particle size vs Oxygen content for all fuel compositions and blends at half load

- → More oxygen produces smaller primary particles
- → Smaller particles being oxidised more easily (Liati et al.)

Hypothesis Project Proposal

 \succ 1.) More oxygen in the fuel will produce smaller primary particles \checkmark

Hypotheses Project Proposal

> 2.) Biodiesel produces amorphous primary particles and as a results more

prone to oxidation V

Fringe Analysis

Fringe Characterization Results: Length

a.) example: Algae B50, 50 % Load

b.) example: Diesel, 50 % Load

Fringes shorter than 0.5 nm were sorted out as noisy structure

→ Biodiesel shows shorter fringes

Spectral analysis of biodiesel and diesel showed:

- → Elements within fuels: Mainly oxygen and carbon
- → Higher oxygen to carbon ratio for biofuel