Examination of the θ-term of QCD with tensors

Viktor Papara

Ludwig Maximilians Universität München

November 10, 2014

Analyzing the vacuum structure of QCD
Consider only gauge fields (pure gauge):

$$
A_{\mu}(x)=\frac{i}{g} U(x) \partial_{\mu} U^{\dagger}(x)
$$

Simple example of topological classes:
$f:[0,1] \rightarrow U(1)$

The θ-term of QCD

The axion solution
Degrees of
freedom of
differential forms
Spin-1, one-form
Two-form
Three-form

Topological classes with a winding number(integer)

$$
q=\frac{g^{2}}{32 \pi^{2}} \int \mathrm{~d}^{4} x F_{\mu \nu}^{a} \tilde{F}_{\mu \nu}^{a}
$$

where $F_{\mu \nu}^{a}$ is the euclidean Field strength and its dual

$$
\tilde{F}_{\mu \nu}^{a}=\varepsilon_{\mu \nu \alpha \beta} F_{\alpha \beta}^{a}
$$

Pre-vacua: ... $|-1\rangle,|0\rangle,|1\rangle \ldots$ with non-vanishing transition amplitude

$$
\langle n| e^{-H \tau}|m\rangle=\int\left[\mathrm{d} A_{\mu}\right]_{n-m} e^{-S_{e}}
$$

The θ-term of QCD

The axion solution
Degrees of
differential forms
Spin-1, one-form

The θ-term of QCD

Good combination:

$$
|\theta\rangle=\sum_{n=-\infty}^{\infty} e^{i n \theta}|n\rangle
$$

with transition amplitude

$$
\begin{gathered}
\left\langle\theta^{\prime}\right| e^{-H \tau}|\theta\rangle= \\
=\delta\left(\theta^{\prime}-\theta\right) \int\left[d A_{\mu}\right] \exp \left(\int d^{4} \times\left(L_{e}-i \theta \frac{g^{2}}{16 \pi^{2}} \operatorname{Tr}\left(F_{\mu \nu} \tilde{F}_{\mu \nu}\right)\right)\right.
\end{gathered}
$$

The axion solution
Degrees of
freedom of
differential forms
Spin-1, one-form
Two form
Three-form
Analogous CP
problem and
solution
Duality
transformation
The strong CP problem in forms
θ-term written with
three-form
Shift of $C_{a \beta \gamma}$ under gauge transformations

Axion solution: adding a pseudoscalar field (the axion):

$$
\begin{aligned}
& L=-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}+\bar{q}_{i}\left(i \not \emptyset-m_{i}\right) q_{i}+\frac{\bar{\theta} g^{2}}{32 \pi^{2}} F_{\mu \nu}^{a} \tilde{F}^{a \mu \nu} \\
&+\frac{a g^{2}}{32 \pi^{2} f_{a}} F_{\mu \nu}^{a} \tilde{F}^{a \mu \nu}+\frac{1}{2} \partial^{\mu} a \partial_{\mu} a
\end{aligned}
$$

Minimum of effective axion potential is at $\left(a / f_{a}+\bar{\theta}\right)=0$

The axion solution
Degrees of
freedom of
differential forms
Spin-1, one-form
Two-form
Three-form
Analogous CP
problem and
solution

Terminology, differential forms and tensors

$$
\begin{aligned}
F(x)=F_{[\alpha \beta \gamma]}(x) d x^{\alpha} \wedge d x^{\beta} \wedge d x^{\gamma} \\
d F(x)=\partial_{[\mu} F_{\alpha \beta \gamma]}(x) d x^{\mu} \wedge d x^{\alpha} \wedge d x^{\beta} \wedge d x^{\gamma}
\end{aligned}
$$

Degrees of freedom: Number of components with an independent (Klein Gordon) equation of motion

One-form, vector field, spin-1

Massive Case

$$
L=-\frac{1}{4} F_{\mu \nu}^{B} F^{B \mu \nu}+\frac{m^{2}}{2} B_{\mu} B^{\mu}, \quad F_{\mu \nu}^{B}=\partial_{\mu} B_{\nu}-\partial_{\nu} B_{\mu}
$$

yields the "equation of motion" for B^{0} :

$$
\partial_{i} \partial_{i} B_{0}-m^{2} B_{0}=\partial_{0} \partial_{i} B_{i}
$$

and for the remaining spacial components

$$
\partial_{\mu} \partial^{\mu} B^{i}+m^{2} B^{i}=0
$$

Massless Case

$$
L=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}, \quad F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}
$$

Again A^{0} has no independent propagating e.o.m Gauge invariance $A^{\mu} \rightarrow A^{\mu}+\partial^{\mu} \lambda$
Choosing gauge \leftrightarrow completely specify λ
Coulomb gauge $\partial_{i} A_{i}=0$:
\rightarrow only two components have independent propagating e.o.m

$$
\partial_{\mu} \partial^{\mu} A^{j}=0
$$

Massless Limit
Start with massive vector field

$$
L=-\frac{1}{4} F_{\mu \nu}^{B} F^{B \mu \nu}+\frac{m^{2}}{2} B_{\mu} B^{\mu}
$$

and substitute (redefine)

$$
B_{\mu}=A_{\mu}+\frac{1}{m} \partial_{\mu} \varphi
$$

to get Lagrangian and e.o.m.

$$
\begin{array}{r}
L=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{m^{2}}{2} A_{\mu} A^{\mu}+m A_{\mu} \partial^{\mu} \varphi+\frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi \\
\partial_{\mu} F^{\mu \nu}+m^{2} A^{\nu}+m \partial^{\nu} \varphi=0 \\
m \partial_{\mu} A^{\mu}+\partial_{\mu} \partial^{\mu} \varphi=0
\end{array}
$$

Emergence of a gauge invariance:

$$
A^{\mu} \rightarrow A^{\mu}+\partial^{\mu} \lambda, \quad \varphi \rightarrow \varphi-m \lambda
$$

Limit of small mass $\left(m^{2}=0\right)$:

$$
\begin{array}{r}
L=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+m A_{\mu} \partial^{\mu} \varphi+\frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi \\
\partial_{\mu} F^{\mu \nu}+m \partial^{\nu} \varphi=0 \\
m \partial_{\mu} A^{\mu}+\partial_{\mu} \partial^{\mu} \varphi=0
\end{array}
$$

Now massless limit is smooth.

Massive Two-form:

$$
\begin{array}{r}
L=\frac{3}{4} \partial_{[\mu} B_{\alpha \beta]} \partial^{[\mu} B^{\alpha \beta]}-\frac{m^{2}}{4} B_{\mu \nu} B^{\mu \nu} \\
3 \partial_{\alpha} \partial^{[\alpha} B^{\beta \gamma]}+m^{2} B^{\beta \gamma}=0
\end{array}
$$

Field strength is exterior derivative $F^{\alpha \beta \gamma}:=\partial^{[\alpha} B^{\beta \gamma]}$
Three propagating d.o.f.
Massless Two-form:

$$
L=\frac{1}{4} F_{\alpha \mu \nu}^{B} F^{B \alpha \mu \nu}, \quad \partial_{\mu} \partial^{[\mu} B^{\nu \alpha]}=0
$$

Gauge invariance: $B_{\mu \nu} \rightarrow B_{\mu \nu}+\partial_{[\mu} \lambda_{\nu]}$
One propagating d.o.f.
Stueckelberg substitution:

$$
B^{\mu \nu}=A^{\mu \nu}-\frac{1}{m} \partial^{[\mu} \phi^{\nu]}
$$

Massive Three-form

$$
\begin{array}{r}
L=\partial_{[\mu} C_{\alpha \beta \gamma]} \partial^{[\mu} C^{\alpha \beta \gamma]}-m^{2} C_{\alpha \beta \gamma} C^{\alpha \beta \gamma}, \\
\partial_{\mu} \partial^{\mu} C^{\alpha \beta \gamma]}+m^{2} C^{\alpha \beta \gamma}=0
\end{array}
$$

One propagating d.o.f.
Massless Three-form

$$
L=\partial_{[\alpha} C_{\beta \gamma \delta]} \partial^{[\alpha} C^{\beta \gamma \delta]}, \quad \partial_{\mu} C^{[\mu \alpha \beta \gamma]}=0
$$

Gauge invariance: $C^{\alpha \beta \gamma} \rightarrow C^{\alpha \beta \gamma}+\partial^{[\alpha} \lambda^{\beta \gamma]}$
Appropriate gauge \rightarrow no propagating d.o.f. Stueckelberg substitution:

$$
C^{\alpha \beta \gamma}=A^{\alpha \beta \gamma}-\frac{1}{m} \partial^{[\alpha} \phi^{\beta \gamma]}
$$

Analogous θ-term of a massless three-form
Euler-Lagrange equation allows $\mathrm{C}^{\alpha \beta \gamma}$ to have a constant field strength in vacuum: $F^{\alpha \beta \gamma \delta}=\partial^{[\alpha} C^{\beta \gamma \delta]}=F_{0} \epsilon^{\alpha \beta \gamma \delta}$

Solution: "Stueckelberg mechanism" introduction of massless two-form "axion"

$$
L=\left(\partial_{[\alpha} B_{\beta \gamma]}-C_{\alpha \beta \gamma}\right)^{2}+\partial_{[\mu} C_{\alpha \beta \gamma]} \partial^{[\mu} C^{\alpha \beta \gamma]}
$$

$\rightarrow C^{\alpha \beta \gamma}$ got a gauge invariant mass (got higgsed)
\rightarrow Field strength vanishes in vacuum

Duality between two-form and pseudoscalar

Simple case:

$$
\begin{aligned}
& L=3 m^{2}\left(P_{\alpha \beta \gamma}-C_{\alpha \beta \gamma}\right)^{2}-12 F_{\mu \alpha \beta \gamma} F^{\mu \alpha \beta \gamma} \\
& \text { with } P_{\alpha \beta \gamma}=\partial_{[\alpha} B_{\beta \gamma]} \text { and } F_{\mu \alpha \beta \gamma}=\partial_{[\mu} C_{\alpha \beta \gamma]}
\end{aligned}
$$

Take $P_{\alpha \beta \gamma}$ as fundamental three-form and ensure its properties with lagrange multiplier $L_{a}=\Lambda^{2} a \varepsilon^{\mu \alpha \beta \gamma} \partial_{[\mu} P_{\alpha \beta \gamma]}$. Integrate out $P_{\alpha \beta \gamma}$ and then $C_{\alpha \beta \gamma}$
\rightarrow effective equation of motion for $a: \partial_{\mu} \partial^{\mu} a+m^{2} a=0$
Arbitrary potential:

$$
\begin{array}{r}
L=\Lambda^{4} K\left(\frac{F}{\Lambda^{2}}\right)+3 m^{2}\left(P_{\alpha \beta \gamma}-C_{\alpha \beta \gamma}\right)^{2}+\Lambda^{2} a \varepsilon^{\mu \alpha \beta \gamma} \partial_{\mu} P_{\alpha \beta \gamma} \\
F=\epsilon^{\mu \alpha \beta \gamma} F_{\mu \alpha \beta \gamma}=\epsilon^{\mu \alpha \beta \gamma} \partial_{[\mu} C_{\alpha \beta \gamma]}
\end{array}
$$

θ-term with three-form

$$
L_{\theta}=\frac{\theta g^{2}}{32 \pi^{2}} G_{\mu \nu}^{a} \tilde{G}^{a \mu \nu}
$$

With $G_{\alpha \beta}^{a}=\partial_{\alpha} A_{\beta}^{a}-\partial_{\beta} A_{\alpha}^{a}+g f^{a b c} A_{\alpha}^{b} A_{\beta}^{c}$ and $\tilde{G}^{\mu \nu}=\epsilon^{\mu \nu \alpha \beta} G_{\alpha \beta}$
After rearranging, L_{θ} takes the form

$$
\frac{g^{2} \theta}{32 \pi^{2}} G_{\alpha \beta}^{a} \tilde{G}^{a \alpha \beta}=\theta \varepsilon^{\alpha \beta \gamma \delta} \partial_{[\alpha} C_{\beta \gamma \delta]}=\theta F
$$

with

$$
C_{\alpha \beta \gamma}=\frac{g^{2}}{32 \pi^{2}}\left(A_{[\alpha}^{a} G_{\beta \gamma]}^{a}-\frac{1}{3} g f^{a b c} A_{[\alpha}^{a} A_{\beta}^{b} A_{\gamma]}^{c}\right) .
$$

Shift of $C_{\alpha \beta \gamma}$ under gauge transformations

 Infinitesimal gauge transformation:$$
A_{\mu}^{a} \rightarrow A_{\mu}^{a}+\frac{1}{g} \partial_{\mu} \omega^{a}+f^{a b c} A_{\mu}^{b} \omega^{c}
$$

Transformation of

$$
\begin{gathered}
C_{\alpha \beta \gamma}=\frac{g^{2}}{32 \pi^{2}}\left(A_{[\alpha}^{a} G_{\beta \gamma]}^{a}-\frac{1}{3} g f^{a b c} A_{[\alpha}^{a} A_{\beta}^{b} A_{\gamma]}^{c}\right) \\
C_{\alpha \beta \gamma} \rightarrow C_{\alpha \beta \gamma}+\partial_{[\alpha} \Omega_{\beta \gamma]} \\
\Omega_{\beta \gamma}=-\frac{g^{2}}{32 \pi^{2}} \partial_{[\beta} \omega^{a} A_{\gamma]}^{a}
\end{gathered}
$$

The θ-term of QCD

The axion solution
Degrees of
freedom of
cilferential forms
Spin-1, one-form

Questions?

Two-form
Three-form
Analogous CP
problem and
solution
Duality
transformation
The strong CP problem in forms
θ-term written with
three-form
Shift of $C_{\alpha \beta \gamma}$ under gauge transformations

