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I Originally, I wanted to work on String theory. My advisor,
Dieter Lüst initially told me, to write on graviton amplitudes in
String theory and then I should compare them with articles
from Dvali/Gomez on a model called “classicalization”

I However, it actually turned out that after reading Dvali/Gomez
articles, I found evidence of severe problems in their approach.

I Hence in my thesis, I first collected the necessary tools in order
to show the problems in the articles by Dvali/Gomez.

I My thesis also focused on certain mathematical details from
topology, but that is not the topic here.



I In perturbative quantum gravity, we decompose the metric
into gµν = gµν + hµν with gµν as Minkowski metric and hµν
as quantum field.

I Then follows a Taylor expansion of the Lagrange density
L =

√
−gR in hµν where L is linear in hµν and L is quadratic

in hµν .
L =

√
−gR + L+ L

And we insert the perturbativly expanded action
S =
´
d4xL(φ) into the amplitude

Z =

ˆ
Dhµνe iS (1)

I The action S =
´ √
−gRd4x is invariant with respect to

gauge transformations of the form (ηα is a displacement)

gµν → gµν ≡ gµν + gαν∂µη
α + gµα∂νη

α + ηα∂αgµν (2)

To avoid double counting of equivalent metrics, we insert a
gauge fixing term i

4ζ

´
d4xGαG

αwhere Gα(hµν) = 0 and a

ghost term i
´
d4x(η̃α)∗Aαβ η̃

β where Aαβ =
δGα(hηµν)

δηβ
.



I The path integral then becomes

Z =

ˆ
Dhµν

ˆ ∏
α

D(η̃α)∗Dη̃αe iS−
i

4ζ

´
d4xGαGα+i

´
d4x(η̃α)∗Aαβ η̃

β

setting the background to gµν = ηµν , one can derive the
Feynman rules of gravity.

I For example, we get a propagator

k αβµν
= Dµναβ(k) =

1
k2−iε(ηµαηνβ + ηµβηνα − ηµνηαβ)



and a vertex for graviton coupling to itself
k2 k1

k3
Vα1β2α2β2α3β3

V (k1, k2, k3)α1β1α2β2α3β3 =

−
(
k2

(α1
k3
β1)

(
2ηα2(α3ηβ3)β2 − ηα2β2ηα3β3

)
+

k1
(α2

k3
β2)

(
2ηα1(α3ηβ3)β1 − ηα1β1ηα3β2

)
+

k1
(α3

k2
β3)

(
2ηα1(α2ηβ2)β1 − ηα1β1ηα2β2

)
+ 2k3

(α2
ηβ2)(α1ηβ1)(α3k

2
β3

) +

2k1
(α3
ηβ3)(α2ηβ2)(α1k

3
β1) + 2k2

(α1
ηβ1)(α3ηβ3)(α2k

1
β2) +

k2k3 (ηα1(α2ηβ2)β1ηα3β3 + ηα1(α3ηβ3)β1ηα2β2 − 2ηα1(α2ηβ2)(α3ηβ3)β1

)
+

k1k3 (ηα2(α1ηβ1)β2ηα3β3 + ηα2(α3ηβ3)β2ηα1β1 − 2ηα2(α1ηβ2)(α3ηβ3)β2

)
+

k1k2 (ηα3(α1ηβ1)β3ηα2β2 + ηα3(α2ηβ2)β3ηα1β1 −2ηα3(α1ηβ1)(α2ηβ2)β3

))



I The structure of the vertex leads to non-renormalizability of
the theory, as can be seen from power-counting.

I For two loops, Goroff and Sagnotti [1] found a non-zero
counterterm made of terms that do not appear in the original
Lagrangian. This implies non-renormalizable divergences:

∆L =
209

2880(4π)4
1
ε

ˆ
d4x
√
−gRαβ

γδR
γδ
εζR

εζ
αβ (3)



I This divergence of the amplitude has severe consequences.
Wald [2] notes in his book “General relativity” on p. 384,

The perturbation theory one obtains from this
approach will, in each order, satisfy causality
conditions with respect to the background metric
gµν rather than the true metric gµν = gµν + hµν .
The summed series could still satisfy appropriate
causality conditions if it were to converge....

I The divergent amplitude therefore implies that the quantum
field has to be weak |gµν | > |hµν | if a treatment with
perturbative quantum gravity is possible. Otherwise, we would
violate causality conditions.



I This is acknowledged by Hawking[3], who writes

Attempts to quantize gravity ignoring the
topological possibilities and simply drawing Feynman
diagrams around flat space have not been very
successful. It seems to me that the fault lies not with
the pure gravity theories themselves but with the
uncritical application of perturbation theory to them.
In classical relativity we have found that perturbation
theory has only limited range of validity. One can not
describe a blackhole as a perturbation around flat
space. Yet this is what writing down a string of
Feynman diagrams amounts to.

I Saying this, one should note that one can in fact derive the
Schwarzschild solution approximately from three graphs.[5]
Certainly, even the weak gravitational field of a golf ball
creates a Schwarzschild solution. The author [5] is careful to
note that he does not! derive a blackhole, but only an
approximation of the Schwarzschild metric to the second order
of the gravitational coupling constant.



I A way to do non-perturbative quantum gravity is with a
Hamiltonian [4].

I We decompose the metric gµν =

 −N2 + βiβ
i βj

βi γij

 ,

I Using the Lagrangian L =
´
d3x
√
−gR we get the conjugate

momenta π = δL
δ∂tN

= πi = δL
δ∂tβi

= 0 and
πkl =

√
γ(γkl(K − K kl) with K as extrinsic curvature.

I Then, one can derive the Hamiltonian of gravity:

H =

ˆ
d3x(π∂tN + πi∂tβi + πij∂tγij)− L

=

ˆ
d3x

(
N
√
γ(Gijklπijπkl −

√
γ(3)R)− βi2Dj(γ

−1/2πij)
)

=

ˆ
d3x

(
NHG + βiχ

i
)

where Gijkl = 1
2γ
−1/2(γikγjl + γilγjk − γijγkl).

I One gets χi = 0 . Using π = 0⇒ ∂tπ = 0, Hamilton’s
equation implies {π,H} = ∂tπ = 0 = ∂H

∂N = 0 = H



I We have the Poisson brackets

{γij(x), πkl(x ′)} = δk(iδ
l
j)δ(x , x ′)

I In the quantum theory these become commutators of operators

[γ̂ij(x), π̂kl(x ′)] = δk(iδ
l
j)δ(x , x ′)

acting on a state functional ψ(γij).
I These commutator rules are fulfilled if γ̂ijψ = γijψ and
π̂ijψ = 1

i
δ
δγij
ψ

I Inserting this in the Hamiltonian constraint we get the Wheeler
deWitt equation (WdW) [6](

Gijkl
δ

δγij

δ

δγkl
+
√
γ(3)R

)
ψ = 0



I Before we ask for solutions to this equation, we have to note
that there is an inconsistency that emerges at high energies:
Letting x → x ′ and using our commutator rules, we can
compute [

γ̂ij(x), π̂ij(x)
]

= 6iδ(x , x)

I And therefore we have with an infinitesimal displacement ζ[
6i~δ(x , x), i

ˆ
χk ′δζ

k ′d3x ′
]

= 0. (4)

I On the other hand, one gets by direct calculation (,k means
partial differentiation with respect to xk)[
γ̂ij(x)π̂ij(x)− π̂ij(x)γ̂ij(x), i

ˆ
χk ′δζ

k ′d3x ′
]

= −6i
(
δ(x , x)δζk

)
,k

= 0

.



I deWitt notes that the delta function, “may be taught as a limit
of a sequence of successively narrower twin peaked functions,
all of which vanish at point x ′ = x in the valley between the
peaks”

δ(x) = lim
ε→0

δε = lim
ε→0

1
2π

(
fε(x −

√
ε) + fε(x +

√
ε)− 2fε(x)

1 + ε

)
(5)

where
fε(x) =

ε

x2 + ε2

I deWitt [6] writes “In an infinite world, passage to ε→ 0 would
correspond to the usual cutoff going to infinity in momentum
space” and he emphasizes that the then appearing
inconsistency “bears on problems of interpreting divergences”.
Apparently, this version of quantum gravity becomes
inconsistent at high energies.



I One can solve the WDW equation therefore only
approximately, e.g. by a WKB ansatz.

I For a particle, Peskin/Schroeder show on p. 279 that the path
integral Z (x0, x1,T ) =

´ x1
x0
Dx(t)e iS , with

S(x ,T ) =
´ T
0 dt(m2 ẋ

2 − V (x)) fulfills the Schroedinger
equation:

i~
∂

∂T
Z (x0, x1,T ) =

(
− ~2

2m
∂2

∂x2
1

+ V (x1)

)
Z (x0, x1,T )

I Hawking [7] has shown that the amplitude of quantum gravity,
Z =

´
Dgµνe iS , without perturbation theory applied, is also a

formal! (but exact) solution of the WDW equation:(
Gijkl

δ

δγij

δ

δγkl
+
√
γ(3)R

) ˆ
Dgµνe iS = 0 (6)

I This is evidence that the WDW theory and the amplitude from
the path integral of quantum gravity are essentially the same
theory.



I Now we apply the WDW equation on blackholes [4, 8]
I For spherically symmetric spacetimes with parametrization

ds2 = −N2(r , t)dt2 + Λ2(r , t)(dr +βrdt)2 +R2(r , t)dΩ2 (7)

and an action

S =

ˆ
dtL =

ˆ
dt

ˆ ∞
0

dr
(
PΛΛ̇ + PR Ṙ − NHG − βrHr

)
(8)

I The WDW equation reads [8](
−Λδ2

2R2δΛ2 +
1
R

δ2

δΛδR
+

RR ′′

Λ
− RR ′Λ′

Λ2 +
R ′2

2Λ
− Λ

2

)
ψ(Λ,R) = 0

(9)
A semi-classical solution of this equation is given by a WKB
ansatz

ψ(Λ,R) = C (Λ,R)e iS0(Λ,R) (10)



I However, it turns out [4, 8] that in order to describe a
spacetime with an event horizon and a flat curvature at
infinity, the action must be supplied with appropriate boundary
terms at infinity and at the horizon and we get

Stotal =

ˆ
dt

ˆ ∞
0

dr
(
PΛΛ̇ + PR Ṙ − NHG − βrHr

)
+

ˆ
dt

R2
0
2
τ̇ −
ˆ

dtM τ̇+ (11)

I In the canonical framework, the functions τ and τ+ represent
additional degrees of freedom that must be supplied with
corresponding canonical momenta π0 and π+. These momenta
can only brought consistently into the action as additional
variables, if we impose the following additional constraints

C0 = π0 −
R2

0
2

= 0, and C+ = π+ + M = 0 (12)



I In the quantum theory, the additional momenta become
π = −i δ

δτ0
and π+ = −i δ

δτ+

I the momenta acting on ψ = C (Λ,R)e iS0(Λ,R.τ0,τ+) with the
additional degrees of freedom τ+ and τ0 then lead to the new
quantum mechanical constraints

∂0S0

∂τ0
− R2

0
2

= 0, and
∂0S0

∂τ+
+ M = 0 (13)

I This changes the phase of the solution S0 into

S0(Λ,R, τ+, τ0)→ S0 +
R2

0
2
τ0 −Mτ+ (14)

I The additional degrees of freedom are in relation to the
parametrization of the metric. Comparison with the
euclideanized Schwarzschild metric yields τ0 = 2π and one
gets the correct formula the black hole entropy with ψ0 as
quantum part of the euclideanized amplitude that can be
neglected and the rest as a boundary part:

ψ(Λ,R, ) = ψ0(Λ,R)e−βM+A
4 (15)



I In their article “black holes as critical point of quantum phase
transition”[9] Dvali/Gomez Gomez write on p. 2 “Black holes
represent Bose-Einstein-Condensates of gravitons at the
critical point of a quantum phase transition”. They start their
calculation from a standard Hamiltonian for a BEC with a
collective quantum state Ψ(x)

H = −~L0

ˆ
d3xΨ(x)∇2Ψ(x)−g

ˆ
d3xΨ(x)†Ψ(x)†Ψ(x)Ψ(x)

I Imposing periodic boundary conditions and a plane wave
expansion Ψ =

∑
k

ak√
V
e i
~k~x
R they get

H =
∑
k

k2a†kak −
1
4
α
∑
k

a†k+pa
†
k ′−pakak ′”



I In contrast to the statements by Dvali/Gomez, the
Hamiltonian of the WdW equation was(

Gijkl
δ

δγij

δ

δγkl
+
√
γ (3)R

)
Ψ(γij) = 0 (16)

I We noted that a quantum mechanical amplitude usually
satisfies the Schroedinger equation for the Hamiltonian.

I For the Gravitational amplitude Z =
´
Dgµνe iS , this

Hamiltonian had the form of the WDW equation which differs
from that of Dvali/Gomez.

I So their Hamiltonian would break with the rule that the path
integral of a theory solves the corresponding Schroedinger
equation.



I For further comparison, we try to write the WDW equation
with creation and annihilation operators. One defines the
following norm:

〈Ψ1|Ψ2〉 =

ˆ ∏
x

dΣij(x)Ψ∗1

(
Gijkl

−→
δ

iδγkl
−
←−
δ

iδγkl
Gijkl

)
Ψ2

(17)
where dΣab is the a surface element of the 6×∞3

dimensional space spanned up by Gijkl .
I If we find a complete set of solutions Ψn that are orthonormal

with respect to the this norm, we can write

Ψ(γij) =
∑
k

(
aijkΨn(γij) + aij†k Ψ∗n(γij)

)
(18)

where aij†k and aijkare the creation and annihilation operators
for gravitons with k momentum.

I There is one article on this: McGuigan [11]writes

“The presence of Gijkl as well as
√
γ (3)R in the

WdW eq. which are not quadratic in γij or its
derivatives will prevent us from finding such
solutions.”



I The quantized Schwarzschild metric(
−Λδ2

2R2δΛ2 +
1
R

δ2

δΛδR
+

RR ′′

Λ
− RR ′Λ′

Λ2 +
R ′2

2Λ
− Λ

2

)
ψ(Λ,R) = 0

(19)
is now one of the spacetimes where the WDW equation does
not have an orthonormal base, since terms like terms like 1/R2

or 1/Λ2occur.
I The impossibility of finding an orthonormal base does not

occur for all spacetimes. For example, McGuigan[11] succeeds
to construct the WDW equation with an orthonormal base of
gravitons in linearized gravity for an S1 × S1 × S1 topology.

I With a weak field WKB approximation, one can indeed find
solutions of the WdW equation of Schwarzschild solutions [8]

ψ = Ce
i
´∞
−∞ dr(RR′arcosh( R′

Λ
√

1− 2M
R

))

These are non-perturbative states but they look different than
the proposals of Dvali/Gomez



I Dvali/Gomez claim that from their Hamiltonian:

“we have reproduced the black hole evaporation
law”

I Calculation of the blackhole entropy from the WDW equation
shows that the entropy emerges not from the quantum part

ψ = Ce
i
´∞
−∞ dr(RR′arcosh( R′

Λ
√

1− 2M
R

))

of a weak field
approximation but from boundary terms at the event horizon
of the blackhole. The boundary terms led to additional,
non-perturbative degrees of freedom. Thereby they imply
additional constraints

∂0S0

∂τ0
− R2

0
2

= 0, and
∂0S0

∂τ+
+ M = 0 (20)

which led to a modification of the phase of the blackhole
quantum state from which the entropy can be derived.

S0(Λ,R, τ+, τ0)→ S0 +
R2

0
2
τ0 −Mτ+ (21)



I The euclidean path integral is connected to the canonical
partition sum Z = tr(e−βH). Hawking computed the entropy
from the classical background term e−I (gµν) of the Euclidean
path integral [12]

Zeu = e−I (gµν)

ˆ
Dhµνe−I (hµν) (22)

I The entropy also emerged from boundary terms in the
euclidean action

I = −
ˆ

d4x
√
gR − 2

ˆ
∂M

d3x
√
γ(K − K 0) (23)

The quantum field hµν would generate a small contribution
from gravitons to the entropy. This contribution is neglected
by Hawking who sets hµν = 0 in [12]. Note also that the
Euclidean section of the Schwarzschild background only covers
the outer Schwarzschild solution. The entropy is therefore
generated outside of the blackhole and Hawking does not even
consider! the interior of the blackhole.



I The boundary terms at the event horizon are important, since
a spherical star without an event horizon has no gravitational
entropy. This is unlike a Bose condensate, whose entropy does
not depend on an event horizon [12]

I Dvali/Gomez correctly assume that the blackhole has a
collective quantum state function.

I Boundary terms depending on an event horizon that led to a
change of the phase of the quantum state are absent in the
Hamiltonian of Dvali/Gomez. Instead their model seems to try

to model the part ψ = Ce
i
´∞
−∞ dr(RR′arcosh( R′

Λ
√

1− 2M
R

))

of the
solution that does not generate the entropy

I Furthermore, standard quantum gravity predicts that the
equation of Hamiltonian, which is solved by the state
functional (the well known amplitude), has entirely different
features than the Hamiltonian of Dvali/Gomez.

I Hence, whatever Dvali/Gomez postulated quantum state ψ for
a blackhole is, it differs from the quantum state of a blackhole
that is predicted by standard quantum gravity.



I In their work “Self-Completeness of Einstein Gravity” [10]
Dvali/Gomez multiply the classical! Schwarzschild radius
rs = 2Gm

c2 with the reduced Compton wavelength
λc = λc

2π = ~
mc which gives so called Planck length lp

rsλc =
2G~
c3 = 2l2p ≥ l2p (24)

Since the Planck mass mp is defined by rs = λc any attempt
to generate a blackhole of mass greater than mp will give a
blackhole larger than its Compton wavelength, which should
be regarded as classical.

I Putting a quantum state within a box of width L with high
walls requires an energy of E ∝ 1

L2 . Converting this into a
mass, m = E/c2 ∝ 1

L2c2 and putting this into the formula for
the Compton wavelength λc = L2~c

c , and the Planck length,
gives

rs =
2l2p
L2~c

(25)



I Even though their arguments uses classical formulas
(rs = 2Gm

c2 ) or non-relativistic ones E ∝ 1
L2 , Dvali/Gomez

argue from this that experiments at trans-planckian energies
would imply creation of classical blackholes, whose amplitudes
are finite and suppressed. They write:

“We suggest that pure Einstein gravity is self
complete in deep-UV. We argue that for restoring
consistency no new propagating degrees of freedom
are necessary at energies >> mp”

I They add
"since our argument is fully non-perturbative, no

perturbative finiteness is necessary"’

But they do not really evaluate the non perturbative
amplitude. It’s easy. It just means no perturbation in the
action. We do that here...



I The path integral is usually oscillating. For an ordinary scalar
field theory,

Z =

ˆ
Dx(t)e iS(ϕ) (26)

one can make the path integral convergent by making a Wick
rotation:

Zeu =

ˆ
Dϕ(t)e−I (ϕ) (27)

where I (ϕ) = −iS(ϕ) is the Euclidean action.
I For fields that are real on the Euclidean space, the path

integral then converges.
I Note that Dvali/Gomez use the Euclidean path integral

implicitly when they assert that amplitudes from classical
blackholes are suppressed.



I We decompose the metric into g̃µν = Ω2gµν , with Ω(x) as a
conformal factor.

I We write the path integral as

Zeu =

ˆ
DgY (g) (28)

where
Y (g) =

ˆ
DΩe−I (Ω2,g) (29)

I But the euclidean action for a metric like Ω2gµν is [13]

I (Ω2, g) = −
ˆ

d4x
√
g
(
Ω2R + 6gµν∂µΩ∂νΩ

)
(30)

I The imaginary axis has to be chosen that way to be the same
as for fermions.

I Due to the derivatives of Ω, the action I (Ω2, g) is arbitrarily
negative if a rapidly varying Ω is chosen. Since we have to
sum over all possible Ω, the amplitude becomes divergent.



I A summation over classical blackholes was included since we
had to sum over conformal factors Ω2 = 1 and gµν as a
Schwarzschild metric.

I Another way of doing non-perturbative quantum gravity would
be the WdW equation which generates the full
non-perturbative amplitude(

Gijkl
δ

δγij

δ

δγkl
+
√
γ(3)R

) ˆ
Dgµνe iS = 0 (31)

I Unfortunately, this theory is only consistent for low energy
states within a WKB approximation. At high energies the
theory becomes inconsistent, yielding equations like

0 = −6i
(
δ(x , x)δζk

)
,k

I Neither the occurrence of classical blackholes render the
amplitude finite, nor is the equation that generates the non
perturbative amplitude consistent at high energies.

I This stands against claims that standard quantum gravity
would be “self complete” and the.amplitude finite without
additional assumptions.



I However, one can try to cure the model.
I Hawking [14] summed the euclidean path integral

non-perturbatively just over classical metrics and multiplied to
that the perturbative one loop correction for weak quantum
fields. With help of Zeta function renormalization for the
quantum part and the Atiyah Singer index theorem for the
non-perturbative, classical part, one can express the amplitude
as a function of topological invariants. (which is a reason why
every physicist should know index theory)

Z (Λ) ∝
(

Λ

Λ0

)−aχ
e

8πd2χ
Λ

I With a saddle-point approximation, one can compute that the
dominant metrics have zero signature and one finds that the
Euler characteristic is

χ ∝ hV

I.e we have one gravitational instanton per h−1unit volumes,
where h is some constant. This is a picture of a spacetime
that is filled with virtual gravitational instantons.



I Unfortunately, there is a problem common in models with
gravitational instantons at planck scale: The trajectories of
particles that are flying in these spacetimes may be affected by
the curvature of the instantons [15, 16].

I A typical amplitude for a scalar particle is

−
ˆ

u(x ′)
←→
∇ µG (x ′, y ′)

←→
∇ νv(x ′)dΣµ(x ′)dΣν(y ′) (32)

where Σµ(x ′) and Σν(y ′) are the Cauchy data for the initial
and final states and G (x ′, y ′) is the Green’s function.

I The Green’s functions of curved spacetimes are highly different
from propagators in flat space. We do not even know them for
all possible metric[15, 16].

I E.g. the Green’s functions of CP2 space have the form,

G (x ′, y ′) =
1

4π2ρ′(1− L)
(33)

where

L =
(ρ′ + x ′y ′ − inlµνx

′µy ′ν)(ρ′2 + x ′y ′ + inlµνx
′µy ′ν)

(ρ′2 + x ′2)(ρ′2 + y ′2)
(34)



I If the spacetime is simply connected, one has the result that
the topology of manifolds up to homeomorphy is given by the
signature and the Euler characteristic and all possible values of
them can be reproduced by CP2, CP2,S2 × S2, K 3,K 3. spaces
(mathematical reason why that is the case is explained in my
thesis).

I Hawking, Page and Pope sum over these metrics but the
amplitudes they get would give large corrections for spin s = 0
particles[15, 16]

A ∝
(
k1k2

mp

)s

(35)



I Hawking et al write that this would suggest that the Higgs
particle is of composite nature. In 2012, the Higgs particle has
been found at the Large Hadron Collider in Genf, and the data
gave evidence for the Higgs field to be a scalar.

I One may think that summing the path integral over more
metrics would solve the problem but Hawking, Page and Pope
write[15, 16]:

“We would expect that averaging over more
general metrics would change the S-matrix elements
by numerical factors only but would not alter their
low-energy power-law dependence on the external
momenta, which is fixed by dimensional
considerations.”

I Hawking does not give many details of this calculation.
Interesting would be if 10 spacetime dimensions make the
discrepancy go away.

I If Hawking is correct the result should create problems for all
models where the gravitational path integral is summed over
virtual gravitational instantons at planckscale on 4 dimensions



I I hope that in a phd thesis, I can be more constructive and
that I can also write more original stuff.

I With that work, I tried to make the best of the situation and
used my time to focus my thesis more mathematical details
from topology or algebraic topology (which I do not touch
during this lecture here).

I Some of the mathematical objects in my thesis are used in
proofs of the Calabi conjecture that is important for the Calabi
Yau spaces in string theory. I would be interested to do work
on aspects of string theory where mathematical ideas are used.

I But first and foremost, I would like to work more
“constructively” in my phd thesis than it turned out here. I am
open for proposals of topics. But I probably need 1-2 weeks to
decide on which proposal I want to work.
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