A general form for the electroweak corrections to the dark matter relic density

Tanja Geib

in collaboration with Martin Beneke, Aoife Bharucha and Torsten Pfoh

Technische Universität München

IMPRS, November 10, 2014

Introduction

The dark matter (DM) candidate

- WIMP (weakly interacting massive particle) with mass $M_{\chi} \sim O(\text{few TeV})$
- lightest, electrically neutral member of a non-degenerate SU(2)
 multiplet χ, by which we extend the Standard Model

$$\mathcal{L} = \mathcal{L}_{SM} + \bar{\chi} \left(i \gamma^{\mu} D_{\mu} - M_{\chi} \right) \chi$$

where $D_{\mu} = \partial_{\mu} - igt^{a}W_{\mu}^{a}$

- non-relativistic at the time of freeze-out in the early universe: cold DM
- $\bullet\,$ motivated from wino limit of MSSM \to R-parity like multiplicative conserved quantum number

Introduction

For cold, thermally produced DM, including **coannihliations**, the **RELIC DENSITY** is given by

$$\Omega h^2 = \frac{1.07 \cdot 10^9 \,\text{GeV}^{-1} x_f}{g_*^{1/2} M_{\text{Pl}} (a_{\text{eff}} + 3b_{\text{eff}} / x_f)}$$

with

- the effective cross section $\sigma_{\text{eff}}v = \sum_{i,j=1}^{k} r_i r_j \sigma_{ij}v = a_{\text{eff}} + b_{\text{eff}}v^2 + \mathcal{O}(v^4)$ being the sum over the Boltzmann weighted inclusive annihilation cross sections
- freeze-out time $x_f = M_{\chi}/T_f \approx 20$ (determined iteratively)
- *M*_{Pl} Planck mass, and *g*_{*} effective number of relativistic degrees of freedom at the freeze-out

Great precision on experimentally determined relic abundance: $\Omega_{CDM}^{Planck} h^2 = 0.1198 \pm 0.0026$ (Planck satellite's recent data)

refine the theoretical calculations to a **comparable level**

- calculation of corrections to inclusive annihilation cross sections σ_{ii}
- EW corrections with infrared (IR) origin are of the form $\alpha v^2 \ln(M_\chi/m_W)$
- cancellation theorems do not apply for non-degenerate multiplets
- potentially large due to $M_\chi \gg m_W$

OUR PROJECT:

Great precision on experimentally determined relic abundance: $\Omega_{CDM}^{Planck} h^2 = 0.1198 \pm 0.0026$ (Planck satellite's recent data) $\downarrow \downarrow$ refine the theoretical calculations to a **comparable level**

- calculation of corrections to inclusive annihilation cross sections σ_{ij}
- EW corrections with infrared (IR) origin are of the form $\alpha v^2 \ln(M_\chi/m_W)$
- cancellation theorems do not apply for non-degenerate multiplets
- potentially large due to $M_\chi \gg m_W$

OUR PROJECT:

Great precision on experimentally determined relic abundance: $\Omega_{CDM}^{Planck} h^2 = 0.1198 \pm 0.0026$ (Planck satellite's recent data) $\downarrow \downarrow$ refine the theoretical calculations to a **comparable level**

- calculation of corrections to inclusive annihilation cross sections σ_{ij}
- EW corrections with infrared (IR) origin are of the form $\alpha v^2 \ln(M_\chi/m_W)$
- cancellation theorems do not apply for non-degenerate multiplets
- potentially large due to $M_\chi \gg m_W$

OUR PROJECT:

Great precision on experimentally determined relic abundance: $\Omega_{CDM}^{Planck} h^2 = 0.1198 \pm 0.0026$ (Planck satellite's recent data) $\downarrow \downarrow$ refine the theoretical calculations to a **comparable level**

- calculation of corrections to inclusive annihilation cross sections σ_{ij}
- EW corrections with infrared (IR) origin are of the form $\alpha v^2 \ln(M_\chi/m_W)$
- cancellation theorems do not apply for non-degenerate multiplets
- potentially large due to $M_\chi \gg m_W$

OUR PROJECT:

The framework of effective field theories (EFTs)

Heavy particle effective theory (HPET):

- in analogy to HQET, but with particles and antiparticles
- hard gauge bosons are 'integrated out'
- additionally assume small relative velocity

The inclusive annihilation process $\chi^{a_1}\chi^{a_2} \rightarrow X$ is related to the forward scattering amplitude $\chi^{a_1}\chi^{a_2} \rightarrow \chi^{a_2}\chi^{a_1}$ via the OPTICAL THEOREM:

$$\sigma(\chi^{a_1}\chi^{a_2} \to X) = 2 \operatorname{Im} i \mathcal{A}(\chi^{a_1}\chi^{a_2} \to \chi^{a_1}\chi^{a_2}).$$

SU(2) 'color' decomposition

Small relative velocity \rightarrow initial and final states form **two-particle states** with respect to the SU(2) charge

 \rightarrow express effective four fermion operators in terms of irreducible representations

For SU(2) triplets (with only vector coupling):

- $3 \otimes 3 = 1 \oplus 3 \oplus 5$.
- The **four-fermion vertices** are described by effective operators in irreducible representation:

$$\mathcal{L}_{4 ext{-fermion-op}} = \mathcal{C}^i \mathcal{O}^i \,,$$

where

$$\begin{split} \mathcal{O}^{1} &= \mathsf{N}_{1} \, \bar{h}_{\omega_{4}} \gamma^{\mu} f_{\omega_{3}} \, \bar{f}_{\omega_{2}} \gamma_{\mu} h_{\omega_{1}} \,, \quad \mathcal{O}^{3} = \mathsf{N}_{3} \, \bar{h}_{\omega_{4}} \gamma^{\mu} \big(t^{a} \big) f_{\omega_{3}} \, \bar{f}_{\omega_{2}} \gamma_{\mu} \big(t^{a} \big) h_{\omega_{1}} \,, \\ \mathcal{O}^{5} &= \mathsf{N}_{5} \, \bar{h}_{\omega_{4}} \gamma^{\mu} \big(q^{A} \big) f_{\omega_{3}} \, \bar{f}_{\omega_{2}} \gamma_{\mu} \big(q^{A} \big) h_{\omega_{1}} \,, \end{split}$$

with $h_{\omega_i} = (h_{\omega_i}^1, h_{\omega_i}^2, h_{\omega_i}^3)^T$ $(f_{\omega_i} = (f_{\omega_i}^1, f_{\omega_i}^2, f_{\omega_i}^3)^T)$ describing particles (antiparticles) with momentum p_i

Describing of the IR structure: RGE

- Real emission and virtual exchange of EW gauge bosons from and between annihilating particles is described by one-loop diagrams in HPET
- IR singularities in full theory ↔ UV divergence of the operator matrix element ⟨Oⁱ⟩ in HPET

ightarrow calculate divergences in dimensional regularization, and absorb them into multiplicative **Z-factors**

$$\langle \mathcal{O}_i^{\text{bare}} \rangle = Z^{ij}(\mu) \langle \mathcal{O}_j(\mu) \rangle \,.$$

The running with scale μ is described by the anomalous dimension $\gamma = \sum_{n=0} \gamma^{(n)} (\alpha/4\pi)^{n+1}$, and the **renormalization group equation (RGE)** $\frac{d}{d \ln \mu} \langle \mathcal{O}_i^{\text{bare}} \rangle = 0 \rightarrow \frac{d}{d \ln \mu} \langle \vec{\mathcal{O}}(\mu) \rangle = - \underbrace{Z^{-1}(\mu) \frac{d Z(\mu)}{d \ln \mu}}_{C} \langle \vec{\mathcal{O}}(\mu) \rangle.$

Describing of the IR structure: RGE

- Real emission and virtual exchange of EW gauge bosons from and between annihilating particles is described by one-loop diagrams in HPET
- IR singularities in full theory ↔ UV divergence of the operator matrix element ⟨Oⁱ⟩ in HPET

 \rightarrow calculate divergences in dimensional regularization, and absorb them into multiplicative Z-factors

$$\langle \mathcal{O}_i^{\mathsf{bare}} \rangle = Z^{ij}(\mu) \langle \mathcal{O}_j(\mu) \rangle \,.$$

The running with scale μ is described by the anomalous dimension $\gamma = \sum_{n=0} \gamma^{(n)} (\alpha/4\pi)^{n+1}$, and the **renormalization group equation (RGE)** $\frac{d}{d \ln \mu} \langle \mathcal{O}_i^{\text{bare}} \rangle = 0 \rightarrow \frac{d}{d \ln \mu} \langle \vec{\mathcal{O}}(\mu) \rangle = -\underbrace{Z^{-1}(\mu) \frac{d Z(\mu)}{d \ln \mu}}_{\alpha} \langle \vec{\mathcal{O}}(\mu) \rangle.$

Describing of the IR structure: RGE

- Real emission and virtual exchange of EW gauge bosons from and between annihilating particles is described by one-loop diagrams in HPET
- IR singularities in full theory ↔ UV divergence of the operator matrix element ⟨Oⁱ⟩ in HPET

 \rightarrow calculate divergences in dimensional regularization, and absorb them into multiplicative Z-factors

$$\langle \mathcal{O}_i^{\mathsf{bare}} \rangle = Z^{ij}(\mu) \langle \mathcal{O}_j(\mu) \rangle \,.$$

The running with scale μ is described by the anomalous dimension $\gamma = \sum_{n=0} \gamma^{(n)} (\alpha/4\pi)^{n+1}$, and the renormalization group equation (RGE) $\frac{d}{d \ln \mu} \langle \mathcal{O}_i^{\text{bare}} \rangle = 0 \rightarrow \frac{d}{d \ln \mu} \langle \vec{\mathcal{O}}(\mu) \rangle = -\underbrace{Z^{-1}(\mu) \frac{d Z(\mu)}{d \ln \mu}}_{\gamma} \langle \vec{\mathcal{O}}(\mu) \rangle.$

A general form of the anomalous dimension

The general form of the one-loop anomalous dimension matrix $\pmb{\Gamma}$ in color space

$$\begin{split} \mathbf{\Gamma} &= -\sum_{(I,J)} \frac{\mathbf{T}_{I} \cdot \mathbf{T}_{J}}{2} \gamma_{\mathsf{cusp}}(\beta_{IJ}, \alpha) + \sum_{I} \gamma_{I}(\alpha) \,, \\ &\stackrel{\mathsf{our \ process}}{=} \frac{8}{3} \, v^{2} \left(C_{I} + \mathbf{T}_{1} \cdot \mathbf{T}_{4} \right) \frac{\alpha}{4\pi} \,, \end{split}$$

is projected onto the irreducible 'color' basis via

$$\gamma^{ij} = c^{i}_{\{a\}} \Gamma_{\{a\}\{a'\}} c^{j\dagger}_{\{a'\}}.$$

For the SU(2) triplet: the 'color' basis reads

$$\begin{split} c^{1}_{\{a\}} &= \textit{N}_{1} \, \delta_{a_{1}a_{2}} \, \delta_{a_{3}a_{4}} \,, \qquad c^{3}_{\{a\}} &= \textit{N}_{3} \, \left(t^{a}\right)_{a_{2}a_{1}} \left(t^{a}\right)_{a_{4}a_{3}} \,, \\ c^{5}_{\{a\}} &= \textit{N}_{5} \, \left(q^{A}\right)_{a_{2}a_{1}} \left(q^{A}\right)_{a_{4}a_{3}} \,, \end{split}$$

Resumming the forward scattering amplitude

The general process $\chi^{a_1}\chi^{a_2}\to\chi^{a_3}\chi^{a_4}$ leads to the scattering amplitude

$$\mathcal{A}_{\{a\}} v = \frac{1}{4} \sum_{\{s\}} C^{i} W^{ij} \langle \mathcal{O}^{j}_{\text{tree}} \rangle^{\{s\}}_{\{a\}},$$

where interactions were absorbed into the soft function W (by field redefinitions using Wilson lines).

Scale-dependence of $\langle \mathcal{O}^i \rangle$ is transfered onto the soft function \rightarrow **RGE**:

$$rac{d}{d\,\ln\mu}W^{ij}=-\gamma^{ik}W^{kj}\,.$$

From the RGE's solution, we obtain the running of the soft function:

$$W^{ij}(\mu) = \left[V\left(\left(\frac{\alpha(\mu)}{\alpha(m_W)} \right)^{\frac{\gamma_0}{2\beta_0}} \right)_D V^{-1} \right]^{ik} W^{kj}(m_W).$$

Resumming the forward scattering amplitude

The general process $\chi^{a_1}\chi^{a_2}\to\chi^{a_3}\chi^{a_4}$ leads to the scattering amplitude

$$\mathcal{A}_{\{a\}} v = \frac{1}{4} \sum_{\{s\}} C^{i} W^{ij} \langle \mathcal{O}^{j}_{\text{tree}} \rangle^{\{s\}}_{\{a\}},$$

where interactions were absorbed into the soft function W (by field redefinitions using Wilson lines).

Scale-dependence of $\langle \mathcal{O}^i \rangle$ is transfered onto the soft function \rightarrow **RGE**:

$$\frac{d}{d\,\ln\mu}W^{ij} = -\gamma^{ik}W^{kj}\,.$$

From the RGE's solution, we obtain the running of the soft function:

$$W^{ij}(\mu) = \left[V\left(\left(\frac{\alpha(\mu)}{\alpha(m_W)} \right)^{\frac{\tilde{\gamma}_0}{2\beta_0}} \right)_D V^{-1} \right]^{ij} \equiv U^{ij}_{n_f}(\mu, m_W).$$

The general form of the resummed cross section

 \bullet choose the renormalization scale to be the factorization scale, and also $\mu={\it M}_{\chi}$

• since
$$M_{\chi} > m_t > m_W$$
:
 $U_{n_f}(M_{\chi}, m_W) \rightarrow U_6(M_{\chi}, m_t) U_5(m_t, m_W) \equiv U(M_{\chi}, m_t, m_W)$
• We obtain

$$\begin{split} \sigma_{a_{1}a_{2}}^{\text{res}} v &= \frac{1}{2} \sum_{s_{1},s_{2}} C^{i}(M_{\chi}) U^{ij}(M_{\chi},m_{t},m_{W}) \langle \mathcal{O}_{\text{tree}}^{j} \rangle_{\{a\}}^{\{s\}} \Big|_{s_{4/3}=s_{1/2} \atop a_{4/3}=a_{1/2}} \\ &= \sum_{a_{3},a_{4}} \sigma_{\text{Born}}^{i} v U^{ij}(M_{\chi},m_{t},m_{W}) c_{\{a\}}^{j} \delta_{a_{4}a_{1}} \delta_{a_{3}a_{2}} \\ &\to \sum_{a_{3},a_{4}} \sigma_{\text{Born}}^{i} v \left[\mathbbm{1} - \gamma^{(0)} \frac{\alpha(M_{\chi})}{4\pi} \ln \left(\frac{M_{\chi}}{m_{W}} \right) \right]^{ij} c_{\{a\}}^{j} \delta_{a_{4}a_{1}} \delta_{a_{3}a_{2}} \,. \end{split}$$

Numerical analysis: the impact on the relic density

→ The relative size of the EW corrections to the Born level result is of the order of a few per mil.

Numerical analysis: the impact on the relic density

 \rightarrow The relative size of the EW corrections to the Born level result is of the order of a few per mil.

Summary

- directly accessible, model-independent, general form of the resummed inclusive annihilation cross section at LL precision for heavy dark matter
- Only including gauge bosonic final states \rightarrow the impact of EW logarithmic corrections is at per mil level **Reason**: logarithmic corrections suppressed by αv^2 in comparison to LO Born level contribution
- Combining fermionic and bosonic final states with coupling of same order of magnitude: Born cross section into fermions suppressed by $v^2 \rightarrow$ overshadowed by LO bosonic result

Summary

- directly accessible, model-independent, general form of the resummed inclusive annihilation cross section at LL precision for heavy dark matter
- Only including gauge bosonic final states \rightarrow the impact of EW logarithmic corrections is at per mil level **Reason**: logarithmic corrections suppressed by αv^2 in comparison to LO Born level contribution
- Combining fermionic and bosonic final states with coupling of same order of magnitude: Born cross section into fermions suppressed by v² → overshadowed by LO bosonic result

Summary

- directly accessible, model-independent, general form of the resummed inclusive annihilation cross section at LL precision for heavy dark matter
- Only including gauge bosonic final states \rightarrow the impact of EW logarithmic corrections is at per mil level **Reason**: logarithmic corrections suppressed by αv^2 in comparison to LO Born level contribution
- Combining fermionic and bosonic final states with coupling of same order of magnitude: Born cross section into fermions suppressed by v² → overshadowed by LO bosonic result