

Pixel Detector Cluster Rescue

Pixel Detector Cluster Rescue for the Belle II Experiment Stefan Wunsch | November 13, 2014

INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK (IEKP)

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

www.kit.edu

<ロト < 個ト < 目ト < 目ト < 目 < のへで</p>

Overview

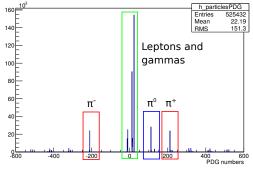
- PXD has about 8 million pixels with 3% occupancy and 4 Byte per pixel
 - \rightarrow Data rate of about 1 MByte/event
- ONSEN output data rate: 100 kByte/event
- ▶ Need data reduction of about 90%

Cluster Rescue via

Region of Interest

- Use SVD and CDC hits to extrapolate on PXD
- Define ROI and store all active pixels in this area
- Main mechanism for cluster rescue

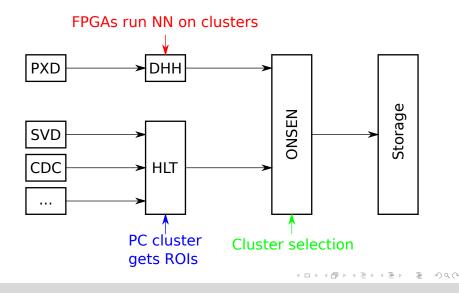
Neural Network


- Train NN on signal PXD cluster parameters
- Implementation on FPGAs by Steffen Baehr (ITIV)
- ► Try to complement missed clusters by ROI

Which clusters do we want to rescue?

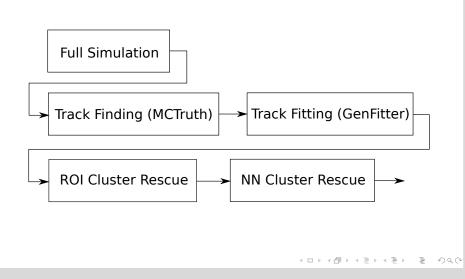
Signal cluster definition

- At least one relation to particle with whitelisted PDG number
- Actual whitelist contains ±211 (π[±])

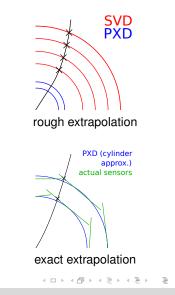

PDG numbers histogram of full simulation

 \equiv

nan


・ロト ・回ト ・ヨト ・ヨト

Cluster Rescue via Region of Interest



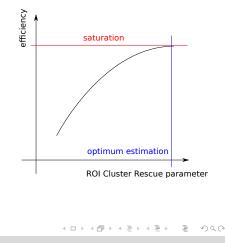
Implementation

- 1) Rough extrapolation on PXD layers (cylinder approx.)
- 2) Find possible sensors in track range via geometry information
- Get ROIs via exact extrapolation on sensor planes

ROI Cluster Rescue Parameters

- Scale factor for Kalman fitter uncertainties
- Maximum ROI size
- Tolerance for sensor finding

nan


ROI Cluster Rescue Parameter Optimization

Method

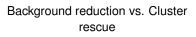
- Hold all parameters except one
- Generate cluster rescue efficiency plot
- ► Choose value next to saturation

Results

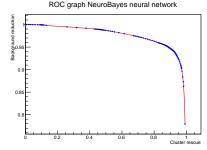
- Mean cluster size is 1x2 pixels
- Square with maximum of 140x140 pixels as ROI
- Square with about 32x32 pixels as mean ROI size
- ► About 3.5 ROIs per track

Cluster Rescue via Neural Network

NN Training Toolchain


- Extract training variables from signal and background ROOT files (basf2 module)
- 2) Use NeuroBayes teacher (stand-alone program)

Implementation


 Simple NeuroBayes expert application

NN Cluster Rescue Parameters

- NeuroBayes expertise file
- Classification threshold

ROC information created from NeuroBayes analysis output via ROOT script

Neural Network Training Variables

- Signal: Signal clusters with related particle Pt less than 65 MeV (Christian Pulvermacher diploma thesis)
- Background: Given background simulation data

nrank	nvar	additional signif	only this var	loss when removed	global corr. to others [%]	
1	5	674.34	674.34	185.35	94.0	pixelChargeMean 14 #5
2	2	245.22	618.64	212.81	87.0	pixelChargeSum 14 #2
3	8	212.32	179.91	237.59	52.2	clusterSizeU 14 #8
4	7	181.09	222.81	121.19	73.0	clusterSize 14 #7
5	4	64.38	670.26	42.30	98.3	pixelChargeMax 14 #4
6	12	53.45	113.59	55.96	13.1	layerNumber 14 #12
7	9	35.38	255.38	35.62	71.7	clusterSizeV 14 #9
8	6	15.59	611.91	6.42	97.3	pixelChargeVar 14 #6
9	3	5.29	279.95	5.33	87.9	pixelChargeMin 14 #3
10	10	3.67	14.32	3.67	3.5	clusterStartU 14 #10
11	11	0.15	24.12	0.15	4.2	clusterStartV 14 #11

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ● ● ● ●

Data Rate Estimation and NN Working Point

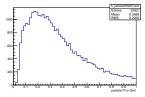
- Assume 50 tracks per event
- ▶ About 180000 ROI pixels per event with 3% occupancy
 → 5000 pixels tagged as signal by ROI Cluster Rescue per event
 → Generates data rate of about 20 kByte/event
- Data rate of about 80 kByte/event free for NN Cluster Rescue
 - \rightarrow Need NN with background reduction rate of about 92%
 - ightarrow Defines working point in NN ROC
- ▶ NN working point with 95% cluster rescue efficiency

Performance

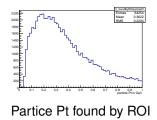
- Single efficiency of NN on clusters with related particle Pt < 65 MeV: 95%
- Single efficiency of ROI Cluster Rescue on clusters with related track: 94%
- Combined efficiency of NN and ROI on simulation data: 90%

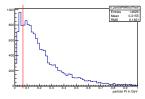
found by	ROI only 76%	NN only 5%	ROI and NN 9%	lost 10%

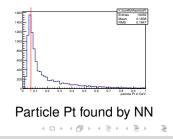
Where goes the lost 10%?



- Particles with no track as main influence
- ► Mean number of clusters per event with relation cluster → valid particle: 15.03
- ► Mean number of clusters per event with relation cluster → valid particle → track: 13.66
- ▶ $1 13.66/15.03 \approx 9\%$ of signal clusters with no attached track
- $\blacktriangleright\,$ Cut on maximum combined efficiency of ROI on $91\% \times 94\% \approx 86\%$


Why we don't rescue more with the NN?


ROI Cluster Rescue


Particle Pt with related track

NN Cluster Rescue

Particle Pt without related track

200