
www.kit.edu

Common Validation Code Base Discussion

Thomas Hauth
Belle II F2F Tracking Meeting – 19.1.2015

http://www.kit.edu/

EKP2

Introduction

Shortly before Christmas last year, I started to investigate the possibility to have a
common code base for tracking validation purposes

This common code can be useful in the following areas:

Production of the validation plots for the nightly builds website

Documenting quality improvements to tracking code by developers

Quick & local feedback loop for developers modifying the tracking code

Smaller codebase: better to maintain and new features allows everyone to profit

Zero work (ok, 0.01) to setup a validation for a new track finder or event/particle
type

My intention was to look for (already existing ?) code which offered a superset of all
features of the current validation scripts:

Track finding efficiencies and fake rate etc.

Fitting quality criteria: residual and pull distributions of fitted tracks etc.

EKP3

Current Status of Tracking Validation

In the following, a review of the current tracking validation code located under “tracking/”
will be given

All have different implementation and most share zero code (except for some using the
MCTrackMatcherModule for reco track to MCParticle mapping

Most implementations are dedicated to a specific validation purpose (e.g. genfit fit quality,
performance of one track finder)

The following symbols will be used to mark the features implemented by a specific
validation step:

F it quality (Residuals, Pulls, etc.)

E fficiencies and Purity (of Track finding and fitting)

H it efficiency

R esolution

EKP4

Current Status of Tracking Validation
as of subversion revision r14927

tracking/validation/01_steering_genFitStudy.py

Reads genfit::Track and MCParticle information

Runs TrackFitCheckerModule and stores results in ROOT-file tree

Reads genfit::TrackCand to MCParticles relation to determine truth information

tracking/validation/02_plot_genFitStudy.py

Plots the data stored by the previous step

Used for: Genfit fitting evaluation (no track finding) Input: Particle Gun with Pi+

tracking/validation/12_tracking_Efficiency_runTracking.py

Runs the StandardTrackingPerformanceModule which reads genfit::Tracks

Uses genfit::TrackCand and method getMcTrackId() to find related MCParticle

Stores results in in a ROOT TTree

tracking/validation/13_trackingEfficiency_createPlots.py

Plots results of previous step

Code remarkably similar to 02_plot_genFitStudy.py, mostly filling histograms & profiles

Used for: Validation of tracking in the full reconstruction

Input: Particle Gun with Muons in various Pt bins

F R

F E R

Code run in the Validation

EKP5

Current Status of Tracking Validation
as of subversion revision r14927

tracking/modules/trackingEvaluation/

Reads information set by MCTrackMatcherModule

Stores information about each reconstructed track in a ROOT TTree

tracking/modules/trackingPerformanceEvaluation/

Reads information set by MCTrackMatcherModule

Stores results of analysis to ROOT file in histograms and profiles

tracking/validation/[cdcLegendreTracking|cdcLocalTracking|cosmicsTrackingValidation].py
MCTrackMatcher module to create MC <> RECO association to compute efficincies,
residuals etc. (more on MCTrackMatcher on following slides)
Python-based basf2 module reads tracking information and fills root histograms and
profile plots
Python library code for the plotting part is located in the tracking/scripts and shared
between the three validation scripts

Used for: Validation of cdcLegendre & cdcLocal Tracking Input: Comsics generator or EvtGen

F E H R

Tracking Validation Code not run by default

F E H R

F E H R

EKP6

Introduction to MCTrackMatcher module

This module written by Oliver performs a matching between genfit::TrackCands and
MCParticles solely on the shared hits between a reconstructed track and a MCParticle

Reconstructed and MC tracks are grouped in categories

Matched

Clone

Background

Ghost

Matched

Merged

Missing

Reconstructed Tracks MCParticles

Matches to a MCParticle with sufficient hit efficiency
and the best purity of all reco tracks

Matches to a MCParticle but has not the highest hit
efficiency of all reco tracks of this MCParticle

Matches to no MCParticle hits and is made up of
background hits

Matches to no MCParticle as the mininum hit
efficiency and/or purity is not reached

Matches to a reco track with the best hit
efficiency and purity

Contained in a reco track, but another
MCParticle has more hits this reco track

No match with sufficient purity to any
MCParticle

http://kds.kek.jp/contributionDisplay.py?sessionId=9&contribId=71&confId=15329
A more detailed description can be found here:

EKP7

Features for a common validation code base

I compiled this list with input from the Twiki web page

https://belle2.cc.kek.jp/~twiki/bin/viewauth/Software/TrackingValidation

and discussions with colleagues from the Belle II Tracking community

Ability to validate either one track finder or track fitter standalone or run the whole
reconstruction chain

Flexible input/event generation: multiple generators (ParticleGun/EvtGen) with specific
settings and reading from a pre-produced ROOT file

Plots of finding efficiency, fake rate, clone rate and hit efficiency over

[momentum, pt, phi, theta, d0, charge, particle id, occupancy]

For the definition of a found track, the MCTrackMatcher nomenclature can be used,
the defaults are:

66% purity: for each false hit added to a track, two correct ones must be present

5% hit efficiency: at least 5% of the MCParticle's hit must be contained in the track

These values can be re-tuned for concrete sub-detector track finders

A special set of plots to show the background contribution to the fake tracks

Resolution, Errors, Residuals, Pulls of fitted parameters

Persistent naming and telling descriptions of the plots

https://belle2.cc.kek.jp/~twiki/bin/viewauth/Software/TrackingValidation

EKP8

Features for a common validation code base (cont.)

Plotting runtime and memory consumption of tracking modules run during the validation

Could this be done even on validate_basf2.py level?

To consider: Reliable runtime measurements are, depending on the environment,
hard to achieve:

On a shared system (->cluster) other factors (->users) can influence the
runtime

On a local system, the validation is executed in parallel an all cores which
makes reproducible runtime measurements difficult

Including the runtime and memory numbers in the validation history (as any other
quantity, plot) allows for a convenient way to spot regressions in this area

The option to disable/enable whole set of plots (e.g. all fit quality plots in case only track
finding should be validated)

Optionally add a curve describing the inofficial/official goals (e.g. final goal, next
milestone, …)

This allows to easily see which parts can still be optimized

Also add the ideal track finding / fitting results produced by MCTrackFinder

EKP9

ANTI-Features for a common validation code base

To prevent feature-bloat and and a unmaintainable code base, we should agree on some
anti-features, which are not part of this validation code base:

Sub-detector specific plotting code, which is only used to debug very detailed aspects of
one implementation

One can possibly think about a low-threshold way to extend the validation code with
specific plots without touching the common code base

Track finding / Track fitting module specific data structures

The common language should always be genfit::TrackCand/genfit::Track and
MCParticles and the relations between them

EKP10

Way to go forward

The MCTrackMatcher is a good module to base further tracking validation
developments on

Offers consistent categorization of both MCParticles and reconstructed
tracks

Around 70% of the listed features are already implemented in the
cdcLocal/cdcLegendre/Cosmics validation scripts

These scripts (and the underlying python classes) are very modular and
will be the most easiest to extend and maintain

I implemented a replacement for the 12_tracking_Efficiency_runTracking.py as a
test using the library in tracking/scripts

This took around 3 hours, the necessary flexibility is available

My proposal is to not implement all the features required to replace existing
validation code all at once

Rather the way should be to replace one validation script with the common
code at a time and add the necessary features and flexibility as needed

When replacing script n+1 already more features are available

EKP11

BACKUP

EKP12

Backup

http://kds.kek.jp/contributionDisplay.py?sessionId=9&contribId=71&confId=15329

EKP13

http://kds.kek.jp/contributionDisplay.py?sessionId=9&contribId=71&confId=15329

EKP14
http://kds.kek.jp/contributionDisplay.py?sessionId=9&contribId=71&confId=15329

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

