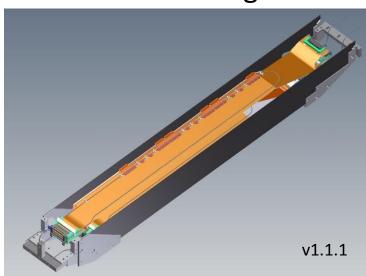
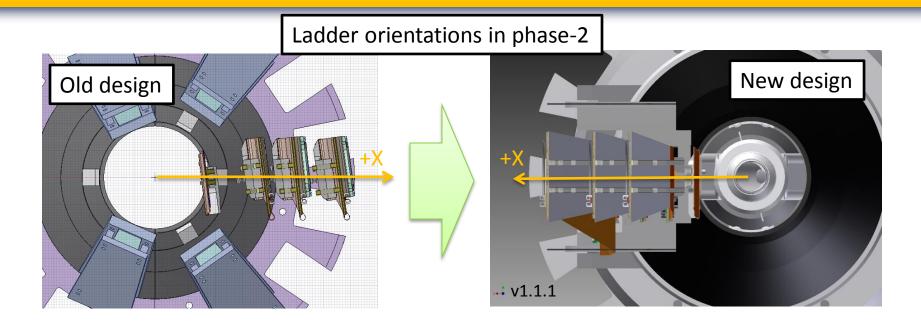


SVD phase-2 commissioning preparation

Katsuro NakamuraJan 23, 20157th VXD workshop


Base Requirements and SVD Cartridge Concept

1 ladder / 1 layer


TWiki for SVD phase-2 commissioning

- 4 ladders in total
- The installation direction is +X
- B-class ladders before mass production will be used.
 - because of limited number of spare A-class ladders
- CO2 cooling will be performed as a study and practice for phase-3.
- Space has to be shared with PXD and monitor sensors.
- Same end-rings cannot be used any more.
- Limited cabling service space.
- "SVD cartridge" would be a good solution for phase-2.
- Merits of the cartridge concept
 - Just mount on end-flange. No need of new end-rings on the CFRP cone.
 - Routing of cables and pipes can be easily done outside of the VXD volume.
 - The initial sensor alignment can be measured by CMM.
 - The cartridge can be used for other beam test.
 - The location of the ladders can easily be switched between +X and -X.

SVD Cartridge

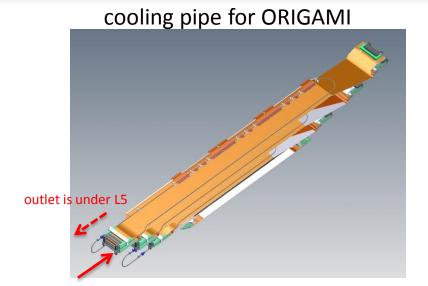
Ladder Orientation in Phase-2

- Windmill angle in phase-3 is for overlaps with adjacent ladders and cancelation of the Lorentz shift.
- However,
 - No overlap in phase-2
 - The Lorentz shift is about 17um in phi-direction and it would be negligible.
- → Put all ladders in perpendicular to the +X direction.
 - It makes the support structures rather simple.

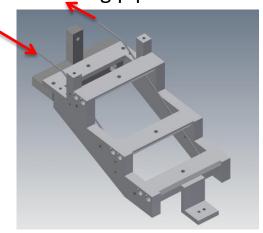
SVD Cartridge Status

- The design for 1st production is prepared.
 - After final checks, I will ask the production to the KEK workshop.
 - CFRP side-plates are already ordered.
- Assembly jig design is not finalized yet.
 - will be finished by Feb. 2015
- Sent the design to Tscharlie to combine it with PXD components
 - Tscharlie has prepared the combined 3D design.
 - Solved interference with PXD
- Mockup of support blocks were produced by 3D printer. Also mockup of CFRP plates will be prepared by Feb. B2GM.
 - Although it is an old design, service area is same.
- We will discuss installation procedure and space allocation of monitor sensors with the mockup at B2GM.

Support blocks of SVD cartridge (made by 3D printer)

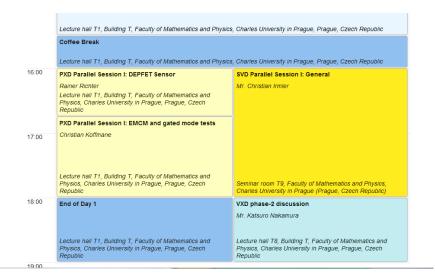


Cooling Pipes on SVD Cartridge


- Problem is the preparation of cooling pipes.
- Cooling pipe for ORIGAMI
 - Diameter: 1.6mm (outer), 1.4mm (in)
 - All curvatures in each pipe is in a plane.
 - In current design, minimal radius for bending is 15mm.
 - Need a larger bending radius? How much radius can HEPHY or DESY accept to produce them?
- Cooling pipe for MB

1/23/2015

- Can we use larder diameter pipe? (e.g. 4mm diameter SUS pipe)
 - We can bend it by ourselves.
- Is the connection with outside pipe problem?



Face-to-face Discussion for phase-2 VXD Commissioning

- We still have a lot of discussion items to prepare the phase-2 VXD commissioning.
- Then, we had a discussion about the phase-2 VXD commissioning from 18:00 21 Jan (Wed.).

Phase-2 sensors in VXD volume

sensor	contact person	number	location	DAQ	note
PXD + SVD	C. Marinas K. Nakamura	2 PXD modules 4 SVD ladders	decided +X	Belle II DAQ	
diamond w/ PIN diode (beam BG, abort)	L. Vitale	4 diamonds 64 PIN diodes	diamond: decided	Belle II monitor DB	PIN diode location: around diamond and beam pipe
FE-I4 pixels (Synchrotron rad. and track multiplicity)	C. Marinas	3 arms	decided (90, 180, 270)	?	arm design has to be fixed
Scintillator (beam BG)	C. Marinas	2 ladders	decided (45 and 135)	?	
Scintillator PIN diode (beam BG)	H. Nakayama K. Nakamura	?	not decided		
BGO (Bhabha events)	Terry (NTU)	8 (if space allows)	under discussion	BEAST DAQ	fixation method has to be decided
temperature (NTC), humidity (DMT242B) (crosscheck for FOS)	L. Vitale	?	not decided	Belle II monitor DB	
FOS + L-shape	I. Vila D. Moya	? 7th VXD v	?	?	sensor on outer cover?

Issues on the previous table

Blanks should be filled by a deadline.

- The deadline will be discussed on the Feb. B2GM in schedule discussion.
- Location of PIN diodes is not urgent issue, but number should be determined to discuss service and cabling.

More detailed information is necessary.

- Data path, front-end and back-end system
- Which quantities to be stored on DAQ
- Necessary trigger
- See the next Tanaka-san's slide

Table will be updated on the Feb. B2GM

- KN will prepare an updated version.
- Plan to have a meeting on 4th Feb (BEAST mini-meeting).
- Since SVD BPAC rehearsal is in same day, time should be arranged.

CFRP Cone in Phase-2

- For phase-3, CFRP cone is necessary to hold SVD ladders.
- However, the phase-2 SVD doesn't use the CFRP cone at all.
 - SVD cartridge is fixed only by endflange.
 - Can we remove CFRP cone?
- Do any groups need the CFRP cone?
 - Diamond detectors or other monitors? \rightarrow No.
 - This question should be asked also to the BGO group.
- Baseline: remove the CFRP cone
 - the ease of assembly
 - larger service space
 - save money for the CFRP cone production

Summary

- The SVD cartridge design (1st version) including assembly jig will be finalized in Feb. 2015.
- However, the problem is cooling pipes.
 - Cooling pipe for ORIGAMI
 - In current design, minimal radius for bending is 15mm.
 - Need a larger bending radius? How much radius can HEPHY or DESY accept to produce them?
 - Cooling pipe for MB
 - Can we use larder diameter pipe? (e.g. 4mm diameter SUS pipe)
 - Is the connection with outside pipe problem?

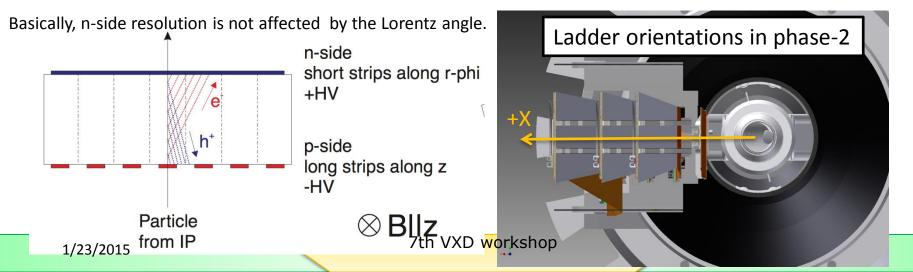
High Energy Accelerator Research Organization

backup

Ladder orientations in phase-2

Ladders in the phase-3 setup are tilted by about 7 degrees due to Lorentz shifts.

Table 1 Lorentz angle of electrons and holes. The Lorentz angle is given for a magnetic field of B = 4 T (CMS)


Bias/V	Electrons (280 K)		Holes (260 K)		
	Θ (deg)	$\Delta x \; (\mu m)$	Θ (deg)	$\Delta x \; (\mu m)$	
40	34	202	7.2	38	
100	31	180	8.0	42	
200			6.5	34	
300			5.3	28	
	_	_		_	

$$\tan(\Theta_{\rm L}) = \frac{\Delta x}{d} = \mu_{\rm H} B = r_{\rm H} \mu B$$

Results are from 290um Si sensor. (NIM A 461 (2001) 200)

In our case, the Lorentz angle is smaller by a factor of about $1.5T/4.0T*320um/290um \sim 41\%$.

- Lorentz shift in p-side will be about 17um. It would be negligible.
- → put all ladders in perpendicular to the +X direction.
 - It makes the support structures rather simple.

Targets of phase-2 operation (1)

We have a lot of targets in the phase-2 operation. We have to keep them in our minds and have proper strategies to achieve them.

- Beam commissioning to start collision (machine group: KCG)
 - Forward luminosity monitors(ZDLM) for knob tuning
- First try of BG control (KEK Belle group: BCG)
 - BG studies of each comportment to check consistency with simulation
 - Studies of relation between VXD hits and monitor hits
 - Beam collimators control study
 - Neutron measurement (fast and slow)
- Belle II commissioning with partial VXD sensors (Belle II shift)
 - Full Belle II DAQ
 - Slow control (also communication with machine)
 - PXD RoI finding with CDC+SVD tracking data
 - Detector noise check
 - And investigation and confirmation to install the full VXD
- Optimization of interlock system
 - Slow info. Some alarms or abort by environmental or rad. monitors
 - First info.: beam abort by hard wired signals

14

Targets of phase-2 operation (2)

- Beam injection BG study
 - BG damping time measurement for Trigger veto gate
 - requiring storing veto gate width to condition database
 - With moderate update timing
- First try of CO2 cooling system for VXD sensors
 - Checking water vapor level by sucking air
 - cold and warm dry volume
- Others?

1/23/2015

- Target luminosity at phase-2 is L ~ 10³⁴ cm⁻² s⁻¹, and BG structure is not exactly same as phase-3. We need somehow extrapolation to expect phase-3 beam BG.
 - how to extrapolate it?
 - Effect from each BG component has to be studied separately by BG MC.
 - The MC simulation for BEAST detectors is performed by Igor??? (Hawaii). Can we ask him to perform also MC for our detectors? Otherwise we have to find a person who can work on that.
 - This extrapolation can be done only after the BG is will controlled by collimator studies.