X/X_0 measurements at the CERN SPS test beam 2014

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg*

University of Göttingen, II. Physikalisches Institut

January 22nd 2015, 18th DEPFET Workshop in Prague

Image: A matrix of the second seco

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* X/X_0 measurements at the CERN SPS test beam 2014 University of Göttingen

X/X_0 Measurement at CERN

first step: Calibration on metal grid

- calibrated angle reconstruction error $\sigma^*_{err} = \lambda \cdot \sigma_{err}$,
 - $\lambda:$ calibration factor
- core width of multiple scattering (MSC) projected angle distribution is then given by

$$\sigma = \sqrt{\sigma_{\rm measured}^2 - \lambda^2 \cdot \sigma_{\rm err}^2}$$

- Calculate $X/X_0(\sigma)$ by using an appropriate MSC model
- $\bullet\,$ optimize λ by comparing the measured values to the grid

second step: Measurement on DEPFET

• Use this optimal λ in the DEPFET X/X_0 measurements

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg*

University of Göttingen

Image: A math a math

 X/X_0 measurements at the CERN SPS test beam 2014

X/X_0 analysis issues at CERN I

Peaks in kink angle distributions

Caused by digital readout of M26 pixels and discretization of hit position

effects dependent on:

• width of the MSC angle distribution

 \rightarrow beam energy

- telescope setup
- (γ) misalignment of the telescope planes
- size of the measurement area

Image: A matrix and a matrix

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* X/X_0 measurements at the CERN SPS test beam 2014 University of Göttingen

X/X_0 analysis issues at CERN I

Peaks in kink angle distributions

Caused by digital readout of M26 pixels and discretization of hit position

effects reduced by:

- merging distributions of both projected angles
- adding artificial gaussian noise to the reco hit position (smearing)

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* X/X_0 measurements at the CERN SPS test beam 2014

X/X_0 analysis issues at CERN II

Effects of adding artificial noise

The addition of gaussian noise also increases the covariances of the hit position. This effectively worsens the spatial and kink angle resolution.

MSC models

Highland (HL) model

$$\sigma = \frac{0.0136 \cdot q[e]}{\beta \cdot p \,[\text{GeV}]} \cdot \sqrt{\frac{X}{X_0}} \left(1 + 0.0038 \ln \left(\frac{X}{X_0} \right) \right) \tag{1}$$

V. L. Highland, Some practical remarks on multiple scattering, Nuclear Instruments and Methods, 1975

Frühwirth model

$$\sigma = \sqrt{\mu_2(d')} \cdot \sqrt{(0.851 + 0.0331 \ln d' - 0.001825(\ln d')^2)}$$
(2)
with $\sqrt{\mu_2(d')} = \sqrt{225 \cdot 10^{-6} \cdot d'/p^2}, d' = \frac{X}{h(Z) \cdot X_0}$
and $h(Z) = \frac{Z+1}{Z} \cdot \frac{\ln(287 Z^{-1/2})}{\ln(159 Z^{-1/3})}$

R. Frühwirth, Nuclear Instruments and Methods, 2001

University of Göttingen

・ロト ・回ト ・ヨト ・ヨ

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg*

 X/X_0 measurements at the CERN SPS test beam 2014

Aluminum grid

- 0.5 mm thick aluminum layers, with different hole configurations
- taped to M26 frame
- increase of material budget by 0.56 % per hole

Image: A math a math

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* X/X_0 measurements at the CERN SPS test beam 2014

Selection of measurement areas

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg*

University of Göttingen

 X/X_0 measurements at the CERN SPS test beam 2014

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* X/X_0 measurements at the CERN SPS test beam 2014

- Comparison between measured and real X/X₀ values via χ² test
- best fit: $\lambda = 1.010 \pm 0.002$

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

- Comparison between measured and real X/X₀ values via χ² test
- best fit: $\lambda = 1.010 \pm 0.002$

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* X/X_0 measurements at the CERN SPS test beam 2014

- Comparison between measured and real X/X₀ values via χ² test
- best fit: $\lambda = 1.010 \pm 0.002$
- but linear fit: slope= $(0.63\pm0.01)\%$ \rightarrow too large
- \rightarrow Use Frühwirth model

Calibration (Frühwirth model)

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* X/X_0 measurements at the CERN SPS test beam 2014 University of Göttingen

Image: A matching of the second se

Calibration (Frühwirth model)

- best fit: $\lambda = 1.008 \pm 0.002$
- large X/X₀ difference for area 3 → 4 and area 6 → 7

Image: A math a math

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* X/X_0 measurements at the CERN SPS test beam 2014

Calibration (Frühwirth model)

- best fit: $\lambda = 1.008 \pm 0.002$
- large X/X₀ difference for area 3 → 4 and area 6 → 7
- Linear fit: $slope=(0.56\pm0.01)\%$ \rightarrow very close to expected value

Image: A math a math

Calibration results

Use this MSC model and λ =1.008±0.002 for further X/X_0 analysis

 X/X_0 measurements at the CERN SPS test beam 2014

X/X_0 map of Run 209

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg*

University of Göttingen

 X/X_0 measurements at the CERN SPS test beam 2014

< □ > < ---->

Conclusion

Preliminary DEPFET X/X_0 measurements

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* X/X_0 measurements at the CERN SPS test beam 2014 University of Göttingen

Preliminary DEPFET X/X_0 measurements

thick Si X/X_0

 X/X_0 (thickSi) = 0.93±0.22% expected: 0.45 %

Image: Image:

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* X/X_0 measurements at the CERN SPS test beam 2014 University of Göttingen

Preliminary DEPFET X/X_0 measurements

thick Si X/X_0

 X/X_0 (thickSi) = 0.93 \pm 0.22% expected: 0.45%

X/X_0 difference

 X/X_0 (PCB-thinSI) = 1.29 \pm 0.15% expected: \approx 1.4-1.5 %

Image: A matrix of the second seco

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* X/X_0 measurements at the CERN SPS test beam 2014 University of Göttingen

Preliminary DEPFET X/X_0 measurements

thick Si X/X_0

 X/X_0 (thickSi) = 0.93 \pm 0.22% expected: 0.45%

X/X_0 difference

 X/X_0 (PCB-thinSI) = 1.29 \pm 0.15% expected: \approx 1.4-1.5 %

Image: A matrix of the second seco

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* X/X_0 measurements at the CERN SPS test beam 2014 University of Göttingen

Conclusion and Outlook

Conclusion

- Radiation length resolution of $\Delta X/X_0 = 0.1$ % using bins of $(500 \ \mu m)^2$ at a beam energy of 120 GeV
- Calibration via aluminum grid works well, differences between Highland and more sophisticated MSC models can be seen
- Main problem of X/X_0 analysis at CERN: Gaps in kink angle distributions caused by digital readout of M26 telescope sensors
- gaussian smearing of the hit position is a temporary solution of this problem

Image: A math a math

Conclusion and Outlook

Outlook

- gaussian smearing of hit position worsens the angle resolution and should be eventually replaced by another procedure → more detailed study of the effects of digital readout
- calibration measurements can be used to study difference between MSC models
- Reapeat calibration measurements at lower beam energies of 3-4 GeV (DESY) $\rightarrow \Delta X/X_0$ will get even smaller

Thanks for your attention!

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* X/X_0 measurements at the CERN SPS test beam 2014 University of Göttingen

Backup Slides

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* X/X_0 measurements at the CERN SPS test beam 2014 University of Göttingen

Reconstruction of MSC angles in a EUDET teleskop

- Reconstruct angles on the DEPFET
- Particle crosses sensor \rightarrow hits

Image: A match a ma

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* X/X_0 measurements at the CERN SPS test beam 2014

Reconstruction of MSC angles in a EUDET teleskop

- Reconstruct angles on the DEPFET
- Particle crosses sensor → hits
- Forward- backward Kalman Filter (KF) pair on hits
- hit on DEPFET not needed → maps
- Take MSC in air gaps into account

Reconstruction of MSC angles in a EUDET teleskop

- Reconstruct angles on the DEPFET
- Particle crosses sensor \rightarrow hits
- Forward- backward Kalman Filter (KF) pair on hits
- hit on DEPFET not needed → maps
- Take MSC in air gaps into account
- θ_p calculated from (m_u, m_v)
- Reco error σ_{reco} from error propagation

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* X/X_0 measurements at the CERN SPS test beam 2014 University of Göttingen

Example of a reconstructed angle distribution

Composition of the Reco Distribution

Reconstructed MSC angle distribution is a convolution between the truth MSC distribution and a Gaussian noise distribution caused by the reconstruction errors

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg*

 X/X_0 measurements at the CERN SPS test beam 2014

University of Göttingen

alu grid pictures

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* X/X_0 measurements at the CERN SPS test beam 2014 University of Göttingen

Image: A math a math

alu grid pictures

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* X/X_0 measurements at the CERN SPS test beam 2014 University of Göttingen

• • • • • • • • • • •

λ dependency of X/X_0 measurement

Small deviations from real calibration factor can have large effects on X/X_0 measurements

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* X/X_0 measurements at the CERN SPS test beam 2014 University of Göttingen

multiple scattering models

R. Frühwirth, Nuclear Instruments and Methods, 2001

• • • • • • • • • • •