Slow Control Status

Mikihiko Nakao (KEK) mikihiko.nakao@kek.jp

22 January 2015 7th Belle II VXD workshop Praha

Purpose of this talk

- Status of VXD slow control status was already nicely summarized by M.Ritzert
- Outline
 - NSM2/EPICS/CSS interface
 - NSM2 based control systems

NSM2/EPICS/CSS packages

• NSM (version 1.9.41)

- tiny package (<1MB source, 4MB binaries, built in 2 seconds)</p>
- bdaq SVN, See https://belle2.cc.kek.jp/~twiki/bin/view/Detector/DAQ/NSM2
- **EPICS** (Release 3.14.12.4)
 - small package (12MB source, 132MB binaries, built in 81 seconds)
 - Official site: http://www.aps.anl.gov/epics/
- CSS on eclipse (cs-studio branch 3.3.x)
 - huge package (1.25GB git clone)
 - Official Site: https://github.com/ControlSystemStudio/cs-studio.git
 - on top of eclipse 3.7.2 + delta-pack 3.7.2 (binaries)
 - plugins / patches by M.Ritzert / T.Roeder

CSS standalone application

script provided by M.Ritzert, even bigger? (3GB in total)

Running NSM2/EPICS/CSS at KEK

- Setting up NSM2 and EPICS is easy (single "make" command), setting up CSS is more challange
- Installed on two PCs in KEK during visit of M.Ritzert/T.Roeder for Scientific Linux 6.5 (b2epics, b2stone)
- I went through the installation procedure again on my Ubuntu 14.04 laptop, and now the procedure is written down at https://belle2.cc.kek.jp/~twiki/pub/Detector/SlowControl/CSS/

notps.//berrez.cc.kek.jp/ twiki/pub/betector/bro

HOWTO.css-in-ubuntu14.04.txt

to be able to work even during a flight

Still on learning curve at KEK

E-hut monitor with EPICS

- Temparature / humidity monitor based on Yokogawa MW100
- Channel assignment is still temporary, but hardwired interlock and alarm are already in operation
- EPICS IOC using modbus
- Set up in October, running since then without break (trend during new year power shutdown is recorded in CSS Archiver)

NSM2 plugin to CSS

- nsm2socket: process to convert native NSM2 data into socket based access, needed for any java or CSS application
- CSS plugin (org.csstudio.belle2.pvmanager.nsm) handles PV

nsm://STORAGE_STATUS:storage_status:node[1]:flowrate_in
in a same way that it access EPICS PV, for example
epics://MW100_1_100:ch01

- Homeworks
 - nsm2socket program to be included in NSM2 package, i.e., to make it independent of slow control software tree in Belle II software SVN
 - there is a delay in updating NSM2 data, which can be removed
 - plugin for NSM2 request from/to CSS is yet to be established, or otherwise a CSS GUI cannot control NSM2 program

NSM2-EPICS communication

- Process to process communication does not need to go through CSS, but then NSM2 process and EPICS process (IOC) have to talk each other
- devNSM IOC: NSM2 data and request accessible by EPICS
 - Still under working directory with example NSM data
 - PV records are defined for test purpose
 - Homework: Framework and PV definitions have to be separated, and repository to be decided
- Homework: EPICS PV to be accessed by NSM2

NSM2-based Run/Slow-control

- Full data acquisition chain for unified Belle2link systems
 HSLB
 → COPPER
 → ROPC
 → EB1
 → HLT (
 → EB2)
 → storage
 - Nested run control process,
 - e.g., ECL has 2 ROPCs and each ROPC has 13 COPPERs to control
 - Established at DESY beam test, now heavily used in ECL cosmic test
- Timing distribution system (TTD)
- Frontend Electronics, through Belle2link or other path
- Power supplies (EPID, KLM, CDC, …)

All pieces are getting ready if we reside in the NSM2 world, although some nice features are missing such as CSS Archiver...

Run control for ECL cosmic ray test

All Barrel ECL is read out, with 18 COPPER modules

O

Screen shot

- This GUI is based on Java-8
- Plan is to switch to CSS, after developing the CSS plugin for NSM2 request

TTD control

- \sim \sim 600 FEEs, \sim 200 COPPERs, \sim 140 FTSW has to be controlled
- Partitioned operation (e.g., ECL and KLM running separately)
- Error location has to be identified
- FEE FPGA programming through JTAG over b2tt

Configuration

- ECL configuration: shaper/ADC via Ethernet
 - Which shapers to be used
 - Readout mode / threshold setting
- KLM configuration
 - Belle2link to download millions of parameters
 - Belle2link stream mode for most of them as it is too many to be mapped on register address space
 - Database and handling scheme is under discussion now

PS control

- PS hardware controlled via Ethernet
- Setting voltages and V/I limits
- Monitor V/I
- Implemented for EPID
- Test started for KLM and CDC
- curses based CUI, too

tkorno@b2slow2:~/slc												(
アイル(E)	竊集(<u>E</u>) 表示	₹(<u>V</u>) ≯	検索 (<u>5</u>) 端末(<u>T</u>)	ヘルブ(円)								
ALL	[ON]:[C	OFF]	Store [0]				Recall [0]					
Crate	Slot	Ch	Switch	RampUp[V]	RampDown[V]	Vdemand[V]	Vlimit[V]	Climit[mA]	State	Vmon[V]	Cmon[mA]	
01	01	00	ON	208	180	2000	9080	1800	ON	1998.0	399.0	
01	02	00	ON	208	100	2100	9080	1800	0 M	2101.0	420.0	
01	03	0.0	ON	208	180	1890	9000	1800	ON	1890.0	378.0	
01	04	0.0	ON	208	100	1900	9080	1800	ON	1899.0	379.0	
01	05	00	ON	208	100	2010	9080	1000	GN	2007.0	401.0	
01	06	00	ON	208	180	2030	9000	1809	GIN	2032.0	406.0	
01	07	00	ON	208	180	2010	9000	1800	GIN	2010.0	402.0	
01	08	00	ON D	208	100	2040	9080	1808	ON	2038.0	407.0	
01	09	00	UN	200	180	2050	9080	1000	OIN .	2051.0	410.0	
01	10	00	UN	200	180	21.20	9080	1000	OIN .	2118.0	423.0	
01		00	UN	200	180	2010	9080	1000	OIN .	2009.0	401.0	
01	12	00	UN	200	180	2000	9080	1000	OIN .	1996.0	399.0	
01	15	00	ON	208	180	2000	9080	1000	OIN	1999.0	399.0	
01	14	00	ON	208	100	2000	9080	1000	OIN	1996.0	399.0	
01	15	00	UN	208	180	2000	9080	1000	OIN	1999.0	399.0	
01	16	00	UN	208	100	2000	9080	1000	OIN	1999.0	399.0	
01	14	00	UN	200	100	2000	9080	1000	OR	1998.0	399.0	
01	18	00	CIN	200	100	2000	9060	1000	OIN	2002.0	400.0	
02	01	01	CIN	200	100	2000	9060	1000	OIN	1999.0	599.0	
02	01	02	CIN	200	100	2000	9060	1000	OIN	1999.0	599.0	
02	01	0.5	City	208	100	2000	9060	1000	ON	1999.0	399.0	
02	01	04	City	206	100	2000	2000	1000	01	1000 0	399.0	
02	07	0.5	City	206	100	2000	2000	1000	01	1002 0	399.0	
02	02	01	Call	206	100	1900	2000	1000	0.0	1992.0	200.0	
02	02	01	035	200	100	1900	2000	1000	0.0	1992.0	200.0	
02	02	0.1	010	200	100	1900	2000	1000	0.0	1992.0	790.0	
02	02	04	010	200	100	1900	2000	1000		1992.0	790.0	
02	02	01	CIN CIN	200	100	1900	9000	1000		1797 0	350.0	
0.2	03	0.7	600	200	100	1800	9080	1000		1797 0	359.0	
02	02	01	010	200	100	1000	5060	1000		1707 0	359.0	
02	03	04	CN CN	200	100	1800	9000	1000	OIN I	1797.0	359.0	
02	03	04	(0)0	200	100	1800	9000	1000		1797.0	359.0	
02	0.0	00	CIN CIN	200	100	1600	9060	1000	ON N	1858 0	359.0	
02	04	01	(0)	200	100	1870	9060	1000		1858 0	373.0	
02	04	01	CIN CIN	200	100	1670	9000	1000	UN I	1959 0	373.0	
02	04	03	CN CN	200	100	10/0	9060	1000	ON	1959 0	373.0	
02	04	04	UN	200	100	1870	9000	1000	UN	1008.0	3/5.0	
02	04	05	ON	208	100	1870	9080	1000	ON	1858.0	373.0	

Summary

- NSM2/EPICS/CSS are now used in KEK on regular basis
- NSM2 based run control chain is now established
- We are now making a new step for the CSS unification, but only after Feb. B2GM
 - A few more development steps is needed to use CSS in the NSM2 based control system
 - Not much before Feb B2GM (too soon), next target is March DAQ WS

More general slides...

Glossary

Slow control

- (in a wide sense) everything listed below
- (in a narrow sense) everything other than run control
- (in a narrowest sense) everything other than run/PS control which do not change states during regular run period

🔵 Run control

- \bullet (in a wide sense) to control systems that are involved in data-taking
- (in a narrow sense) to control systems that are involved in data flow and changes the action when data taking starts

Power Supply (PS) control

power supplies that changes the states upon beam condition

CSS unifies the control systems

WANTED

- plugin to read NSM2 data by CSS
- plugin to send NSM2 request from CSS
- IOC to provide NSM2 data/requests to EPICS
- IOC to provide EPICS data/requests to NSM2

Unification of operation (state transition)

Run Control Tree

- **Single master** centralization of all actions taken during the run
- Run control and Power Supply (PS) control are the main players, others are more passive components
- Function-based partitioning Data taking systems and Power Supply systems are independent

