7th Belle II VXD Workshop and 18th International Workshop on DEPFET Detectors and Applications Charles University in Prague, 21-23/01/2015 Preparation of BEAST 2 Simulation

HELMHOLTZ | ASSOCIATION Gianluca Inguglia- DESY 23/01/2015

Analysis plan - short term (as agreed with Carlos Marinas, Igal Jaegle, Sven Vahsen)

Diamonds:

- Where to put them (horizontal or vertical)?
- Expected rates (from the different types of backgrounds)?
- Dose rates?

Work in progress. Preliminary results on Touschek and RBB (HER+LER) shown today. Many thanks to Martin Ritter for providing codes and useful suggestions/support

Neutrons on the ASICs:

- Which neutron rates are expected?
- Energy spectra?

Plan to start after diamond sensors studies.

FE-I4 based sensors:

- Where to put them? Expected rates?
- Synchrotron radiation?

Plan to start after diamond sensors studies.

Belle 2 Schedule (not the latest, however...)

Main backgrounds to study for BEAST II

Touscheck (Beam-induced)

 \propto (beam size)⁻¹ (E_{beam})³N_b I_b²

Intra-beam Coulomb scattering process

Radiative Bhabha (luminosity induced) ∝Vacuum level, beam current γ 100 x KFKB. Compton (Beam-induced) Neutrons produced from the the interaction of photons with iron of the magnets. 2-photon (luminosity induced) Low momentum e^+e^- pair . Previous studies shown it to be below limits required for pixels.

Synchrotron (Beam/luminosity induced) Scales with beam energy² (and B^2). HER main source. Belle SVD inner layer heavily damaged by 2 KeV x-rays during first stage

dipole

Svnc

Rad

Main backgrounds to study for BEAST II

Touscheck Intra-beam Coulomb scattering process Scales with particle density^2 per beam bunch

Injection background
"Unexpected" background

Synchrotron Scales with beam energy^2 (and B^2). HER main source. Belle SVD inner layer heavily damaged by 2 KeV x-rays during first stage

Diamond sensors

4 sensors in each direction positioned at φ =0, 90, 180, 270 [deg] with 2 possible configurations, one parallel and one orthogonal to the z-axis.

Touschek Background

Energy Deposit as a function of sensor position and orientation wrt to z-axis

Particle fluence (γ) as a function of sensor position and orientation wrt to z-axis

7

Touschek Background

Particle fluence (e⁻) as a function of sensor position and orientation wrt to z-axis

Touschek Background

Particle fluence (e^+) as a function of sensor position and orientation wrt to z-axis

Touschek Background

Particle fluence (n) as a function of sensor position and orientation wrt to z-axis

Radiative Bhabha Background

Energy Deposit as a function of sensor position and orientation wrt to z-axis

Particle fluence (γ) as a function of sensor position and orientation wrt to z-axis

Radiative Bhabha Background

Particle fluence (e⁻) as a function of sensor position and orientation wrt to z-axis

Particle fluence (e⁺) as a function of sensor position and orientation wrt to z-axis

Radiative Bhabha Background

Particle fluence (n) as a function of sensor position and orientation wrt to z-axis

Combined Touschek+ Radiative Bhabha Backgrounds

Energy Deposit as a function of sensor position and orientation wrt to z-axis

Combined Touschek+ Radiative Bhabha Backgrounds

Particle fluence (γ) as a function of sensor position and orientation wrt to z-axis

Combined Touschek+ Radiative Bhabha Backgrounds

Particle fluence (e⁻) as a function of sensor position and orientation wrt to z-axis

Combined Touschek+ Radiative Bhabha Backgrounds

Particle fluence (e⁺) as a function of sensor position and orientation wrt to z-axis

Combined Touschek+ Radiative Bhabha Backgrounds

Particle fluence (n) as a function of sensor position and orientation wrt to z-axis

Thank you for your attention and enjoy the rest of the workshop!