7th Belle II VXD Workshop and 18th International Workshop on DEPFET Detectors and Applications
Charles University in Prague, 21-23/01/2015 Preparation of BEAST 2 Simulation

HELMHOLTZ
| ASSOCIATION

Gianluca Inguglia- DESY
23/01/2015

Analysis plan - short term

(as agreed with Carlos Marinas, Igal Jaegle, Sven Vahsen)

Diamonds:

- Where to put them (horizontal or vertical)?
- Expected rates (from the different types of backgrounds)?
- Dose rates?

Work in progress. Preliminary results on Touschek and RBB (HER+LER) shown today. Many thanks to Martin Ritter for providing codes and useful suggestions/support

Neutrons on the ASICs:

- Which neutron rates are expected?
- Energy spectra?

Plan to start after diamond sensors studies.

FE-I4 based sensors:

- Where to put them? Expected rates?
- Synchrotron radiation?

Plan to start after diamond sensors studies.

Belle 2 Schedule (not the latest, however...)

Crucial time before VXD. Studies during this period will answer the question:

Main backgrounds to study for BEAST II

Touscheck (Beam-induced)
Intra-beam Coulomb scattering process $\propto(\text { beam size })^{-1}\left(E_{\text {beam }}\right)^{3} N_{b} I_{b}{ }^{2}$

Radiative Bhabha (luminosity induced) \propto Vacuum level, beam current $100 \times$ KEKB.

Compton (Beam-induced)
Neutrons produced from the the interaction of photons with iron of the magnets.

2-photon (luminosity induced) Low momentum $\mathrm{e}^{+} \mathrm{e}^{-}$pair. Previous studies shown it to be below limits required for pixels.

Synchrotron (Beam/luminosity induced)
Scales with beam energy ${ }^{2}$ (and B^{2}). HER main source.
Belle SVD inner layer heavily damaged by 2 KeV x -rays during first stage

Main backgrounds to study for BEAST II

Touscheck
Intra-beam Coulomb scattering process
Scales with particle density^2 per beam bunch

In Addition to these:

- Injection background - "Unexpected" background

Synchrotron
Scales with beam energy^2 (and $\mathrm{B}^{\wedge} 2$). HER main source.
Belle SVD inner layer heavily damaged by 2 KeV x-rays during first stage

Diamond sensors

4 sensors in each direction positioned at $\varphi=0,90,180,270$ [deg] with 2 possible configurations, one parallel and one orthogonal to the z-axis.

Touschek Background
Energy Deposit as a function of sensor position and orientation wrt to z-axis

Touschek_LER

ϕ position and orientation w.r.t. z-axis

Touschek Background

Particle fluence (e) as a function of sensor position and orientation wrt to z-axis

Touschek_LER
ϕ position and orientation w.r.t. z-axis

Touschek Background
Particle fluence (n) as a function of sensor position and orientation wrt to z -axis

Radiative Bhabha Background

Energy Deposit as a function of sensor position and orientation wrt to z -axis

Radiative Bhabha Background

Particle fluence (γ) as a function of sensor position and orientation wrt to z -axis

Radiative Bhabha Background

Particle fluence (e-) as a function of sensor position and orientation wrt to z-axis

Radiative Bhabha Background

Particle fluence (e^{+}) as a function of sensor position and orientation wrt to z -axis

Radiative Bhabha Background

Particle fluence (n) as a function of sensor position and orientation wrt to z -axis

ϕ position and orientation w.r.t. z-axis

[^0]Combined Touschek+ Radiative Bhabha Backgrounds

Energy Deposit as a function of sensor position and orientation wrt to z -axis

Combined Touschek+ Radiative Bhabha Backgrounds

Particle fluence (γ) as a function of sensor position and orientation wrt to z -axis

Combined Touschek+ Radiative Bhabha Backgrounds

Particle fluence (e) as a function of sensor position and orientation wrt to z -axis

Combined Touschek+ Radiative Bhabha Backgrounds

Particle fluence (e^{+}) as a function of sensor position and orientation wrt to z-axis

Combined Touschek+ Radiative Bhabha Backgrounds

Particle fluence (n) as a function of sensor position and orientation wrt to z -axis
\square Touschek_HER Touschek_LER \quad RBB_HER RBB_LER

ϕ position and orientation w.r.t. z-axis

[^1]
Thank you for your attention and enjoy the rest of the workshop!

[^0]: ϕ position and orientation w.r.t. z-axis

[^1]: ϕ position and orientation w.r.t. z-axis

