

VXDTF studies: Current Status of TrackCand Converter Modules

Thomas Madlener

Institute of High Energy Physics Austrian Academy of Sciences

20. Jan 2015

Motivation for SpacePointTrackCand and Converter Modules

Why do we need SpacePointTrackCands and Converter Modules?

- FilterCalculator shall work with SpacePoints in the future
- Some of current problems should be circumvented by the use of SpacePoints
- VXDTF returns SPTCs (in the future) but genfit works with GFTCs \rightarrow conversion in both directions needed

Glossary:

- SPTC SpacePointTrackCand
- GFTC genfit::TrackCand

Basic Working Principle of Converter Modules

- Using Relations between Clusters and SpacePoints
- exemplary for GFTC2SPTCConverter:

```
for all Cluster in GFTC do
 if Cluster not marked as used then
   clusterSPs \leftarrow
   Cluster.getRelationsFrom<SpacePoint>()
   add tcSpacePoint to SpacePointTrackCand
   mark all Clusters used by tcSpacePoint as used
 end if
end for
add additional information to SpacePointTrackCand
```

• for SPTC2GFTCConverter vice versa without having to find appropriate Clusters

GFTrackCand

detld	hitld	
1	3	
2	1	
2	2	
2	7	
2	4	

GFTrackCand

detld	hitld		
1	3	PXDCluster 3	 SpacePoint 2
2	1		
2	2		
2	7		
2	4		

Getting the appropriate SpacePoint

< ∃⇒

Getting the appropriate SpacePoint

GFTrackCand

detId	hitld	SVDCluster 7		SpacePoint 5
1	3		2	opaceronico
2	1		۲	
2	2		•	
2	7		•	
2	4			

OAW

Features of the appropriate SpacePoint:

- Clusters are contained in SpacePoint and not already used by another SpacePoint → SpacePoint is valid
- Clusters have a position difference of 1 \rightarrow TrackCandHits appear in consecutive order in GFTC

Current Problems/Issues:

- Clusters of GFTC not checked for same sorting parameter
 → can lead to wrong ordered TrackCandHits in back
 transformation
- Efficiency rather low if the strictest possible checks are enabled → ~ 70 - 75 % (for GFTC to SPTC)

Checking if a SPTC is curling by comparing the direction of flight for two consecutive SpacePoints (for all SpacePoints in the SPTC):

- if direction of flight changes for one SpacePoint → SPTC is curling, can be split at this SpacePoint
- else \rightarrow SPTC is not curling

Checking if a TrackCand is curling

Algorithm for getting the direction of flight:

From SpacePoint to TrueHit, ideal case:

▶ < 큔 ▶ < 흔 ▶ < 흔 ▶ 든 ♥ 옷 (HEPHY Wien & BELLE II Collaboration

Thomas Madlener

▶ < 큔 ▶ < 흔 ▶ < 흔 ▶ 든 ♥ 옷 (HEPHY Wien & BELLE II Collaboration

Position residuals vs. TrueHit position, with 'ideal cases':

Position residuals vs. TrueHit position, with 'ideal cases':

Position residuals vs. TrueHit position, with 'issue cases':

Position residuals vs. TrueHit position, with 'issue cases':

position residuals vs TrueHit position U, layer 3

Thomas Madlener

HEPHY Wien & BELLE II Collaboration

Development of a Neural Network Based Track Finder for the Belle II Vertex Detector and Implementation in the Belle II Software Framework

Goals and Next Steps:

- first step: towards generating an enhanced SectorMap with neural networks
- related: feed CA with prior information from neural networks
- long term goal: quality estimation of track candidates with neural networks
- already done: simple MATLAB studies on segment finding (in testbeam setup) with simple neural networks

Thank You!

Supplementary

Histograms of position residuals for ideal cases

Histograms of position residuals for ideal cases

Position Residuals vs TrueHit position for PXD

