SVD Software-Hardware mapping

Abdul Basith K IIT Madras

Belle II VXD Workshop 22-01-2015

Goal..??

To prepare an xml file representing the connections between DSSD strips, APVs, and FADCs for SVD

SVD General information

DSSDs	Туре	No.of strips (p side)	No.of strips (n side)	No. of APVs per sensors (p side)	No. of APVs per sensors (n side)
Large	HPK	768	512	6	4
Trapezoidal	Micron	768	512	6	4
Small	НРК	768	768	6	6

Connection rules between FADCs and hybrids/ Origamis

- FADC \rightarrow 1 Junction board \rightarrow 8 hybrids/Origamis (at most)
- 1 hybrid/Origami reads out one side of a DSSD
- 1 FADC serves either p or n sides, but never both
- 1 FADC serves either FW or BW, but never both
- 1 FADC serves only hybrids in one layer
- 1 FADC serves either HPK or Micron, but never both

FADCs...

	Ladder s	BW sensors (per ladder)	FW sensors (per ladder)	BW sensors (total)	FW sensors (total)	BW FADCs	FW FADCs
L3	7	1 (HPK)	1 (HPK)	7 (HPK)	7(HPK)	1	1
L4	10	2 (HPK)	1 (Micron)	20(HPK)	10(Micron)	3	2
L5	12	3 (HPK)	1 (Micron)	36(HPK)	12(Micron)	5	2
L6	16	3 (HPK)	2 (HPK,Micron)	48(HPK)	16(HPK) + 16 (Micron)	6	4
total				111	61	15	9

•24 FADCs for each p- and n-side, total 48 FADCs.

APV and FADC address

- 1 FADC → 1 Junction board → 8 hybrids/ Origamis and 1 hybrid / Origami can have maximum 6 APVs.
- So we can have APV numbers from **0 to 47**
- 8 bit FADC address

MSD							LSD
1 → n		1 → BW	0	0			
	0		0	1			
0 → p		$0 \rightarrow FW$	1	0	Х	Y	Z
			1	1			

Filling xml file....

Example for L6, ladder 1, sensor 1

```
-<SVD>
-<layer n="6">
  -<ladder n="1">
                        APV #
   -<sensor n="1">
                                    FADC #
                                                    APV --> DSSD strip
     -<side side="u">
        <chip n="0" FADCn= 24" strip number of ch0="000" strip number of ch127="127"/>
        <chip n="1" FADCn="24" strip number of ch0="128" strip number of ch127="255"/>
        <chip n="2" FADCn="24" strip number of ch0="256" strip number of ch127="383"/>
        <chip n="3" FADCn="24" strip number of ch0="384" strip number of ch127="511"/>
        <chip n="4" FADCn="24" strip number of ch0="512" strip number of ch127="639"/>
        <chip n="5" FADCn="24" strip number of ch0="640" strip number of ch127="767"/>
       </side>
     -<side side="v">
        <chip n="0" FADCn="152" strip number of ch0="000" strip number of ch127="127"/>
        <chip n="1" FADCn="152" strip number of ch0="128" strip number of ch127="255"/>
        <chip n="2" FADCn="152" strip number of ch0="256" strip number of ch127="383"/>
        <chip n="3" FADCn="152" strip number of ch0="384" strip number of ch127="511"/>
       </side>
     </sensor>
   </ladder>
  </laver>
\langle SVD \rangle
```

Preparation of Alignment Table

To include more than 6 parameters per DSSDs
 (3 Translation + 3 Rotation + 2 Sagging...)

• How to store the Sagging Parameters..???

Conclusion

- XML file representing the connections between DSSD strips, APVs, and FADCs are prepared for all the four layers with all the connection rules taken into consideration.
- Alignment informations including all the parameters should be stored.

Next..

• Plug into the data base ..

Thank You...