CDC cellular automaton track finding.

Plans

Oliver Frost

Deutsches Elektronensynchrotron 2014-11-28

Planes

Compose a helix class

Rational

- Fragmented efforts to have a simple extrapolation
- Sergey extrapolates cosmics to the radius of the CDC.
- I need to extrapolate cosmics to IP to compare with TrackFitResults.
- Probably similar problem as Giulia solved in her private code.

Questions

- What are the agreed perigee parameter names and ordering?
- $> d_0, \phi, \omega, z_0, \cot \theta$
- $> \kappa$, I, ϕ_0 , $\tan \lambda$, z_0
- > or even things like ρ , dz/ds

A project glossary might help as well.

Extend cosmic validation

Rational

Needed to prove the test beam data can be processed.

Preliminary results

https://belle2.cc.kek.jp/validation/#tracking

Additional plots?

- First / last hit position
- > Measures for the detection inefficiencies?

Extend general validation

Rational

I am looking at a lot of control plots like

- distributions of residuals
- > pulls
- scatter plots
- at various stages

which should to be checked regularly.

Question

- How / which do we provide those to the framework in a structured manner?
- Do you want to see plots on the validation framework showing bad performance?

Increase test coverage - find the bugs

Rational

Weird behavior in the track finder such as:

- > Fit pulls are worse in real segments
- Seed values are not forwarded properly
- Probably more bugs to be found

Distribution of curvature pull (clipped)

Distribution of curvature pull (clipped)

Seed values before track fit

A simple event simulation

Rational

- To serve as input at test time.
- > As an instrument to study effects in a cleaner environment than the full simulation.

Optimize the second stage filters

Rational

- > Bring the acceptance to a reasonable level using χ^2 values.
- > Also investigate if different parameters are needed for
 - different event types / particle mixtures
 - different superlayers

Implement an in-superlayer-segment merging

Rational

Segments in superlayers break easily

- > if tracks cross
- in case of detection inefficiencies
- for cosmics where there are two segments in the inner superlayers (display on next page)

Cosmic track with two segments in superlayer 0

Check / Increase the computational performance

Rational

Fast execution of the track finding is a key feature.

Details

- > Find bottle necks with valgrind
- > Specifically improve where needed

Implement a drift time less veto in the first stage

Rational

- Many facets in the first stage are created.
- Many tangents are constructed unnecessarily for all right left passage hypothesis combinations.
- > May rule out a big chunk by only considering the best ones.
- > Expected reduction in facets ~50%

Details

Vladyslav may help with this.

Merge the two track finders

Rational

- Many things are implemented twice like
 - > Hit objects
 - Track objects
 - > Fits
 - > Trajectory representations
 - > Reconstruction of the z coordinate
 - > A basic event display
 - Sorting of hits in a track
 - Merging of tracklet
- Combining the efforts may lead to synergies.
 - Exchange of ideas, experiences and problems
 - Mutual review of code