Mass limits from β-decay of tritium

25.02.2005

- General properties of tritium
- Former tritium experiments
 - Mainz experiment
 - Troitzk experiment
- Next generation experiment
 KATRIN

Claudia Büttner Physics Discussion Session

Tritium

 $^{3}H \rightarrow ^{3}He + e^{-} + \overline{\nu}_{e}$

superallowed

half life : $t_{1/2} = 12.32 \ a$ *B end point energy* : $E_0 = 18.57 \ keV$

β-decay of tritium

- absolute value of ν mass will have crucial implications for cosmology, astrophysics and particle physics
- tritium β -deay experiments perform a high precision direct measurement of the absolute mass of the v_e with sub-eV sensitivity
- mass of the electron anti-neutrino will be studied
 but: CPT theorem: mass of particle and anti-particle are equal
 mass limits can also be used for electron neutrino

$dN/dE = C \cdot F(Z, E) \cdot p \cdot E \cdot (E_0 - E) \cdot [(E_0 - E)^2 - m_v^2]^{1/2} \Theta(E_0 - E - m_v)$

- F(E,Z): Fermi function which takes into account the Coulomb interaction of outgoing electron in the final state
- p : electron momentum
- E_0 : maximum energy
- E : electron energy
- Θ : step function to ensure energy conservation

Troitzk

Mainz

- windowless gaseous T₂-source:
 - 3m long
 - 5 mm wide
 - 26-28 K
 - T_2 : HT : H_2 = 6 : 8 : 2
- electrostatic spectrometer:
 - 6 m long
 - 1.2 m wide
 - $p = 10^{-9} mbar$
- detector:
 - Si(Li)

- $\boldsymbol{\cdot}$ quench-condensed solid T_{2} film
 - 45 nm thick, area 2cm²,
 - 20 mCi activity
 - 1.86 K
- electrostatic spectrometer:
 - 2 m long
 - 0.9 m wide
 - p < 5.10⁻⁷ mbar
- detector:
 - -segmented Si detector

Final results: Troitzk: $m_v^2 = -2.3 \pm 2.5 \pm 2.0 \text{ eV}^2$ $m_v < 2.2 \text{ eV}$ Mainz: $m_v^2 = -0.7 \pm 2.2 \pm 2.1 \text{ eV}^2$ $m_v < 2.2 \text{ eV}$ limit of intrinsic sensitivity

Next-generation direct v mass experiments

Exp. observable in β -decay is m_v^2

- low background
- large solid angle
- higher energy resolution: E/AE~A_{spec}, relevant region below endpoint is smaller: dN/dt ~A_{spec} requires: larger spectrometer
- · improvement of sensitivity of $m_{_V}$ by one order of magnitude (2 eV \rightarrow 0.2 eV)
 - requires: improvement for m_v^2 by two orders of magnitude
- stronger tritium source & larger analysing plane
- longer measuring period

KATRIN - KArlsruhe TRItium Neutrino Experiment

- much longer measuring time: 1000 d
- 70 m linear setup with 40 sc solenoids
- pre-spectrometer:
 - transmition of electrons with highest energies only $(10^{10} \text{ e/s} \rightarrow 10^3 \text{ e/s})$
 - \Rightarrow reduction of scattering probability in main spectrometer

spectrometer

detector

main spectrometer

- \Rightarrow reduction of background
- main spectrometer:
 - 22 m long on HV potential

gaseous tritium source transport section

- 10 m wide
- p < 10⁻¹¹ mbar
- $\Delta E = 1 eV$

MAC-E-Filter

Magnetic Adiabatic Collimation + Electrostatic Filter

- two superconducting solenoids compose magnetic guiding field
- tritium (electron source) in left solenoid
- e⁻ in forward direction: magnetically guided
- adiabatic transformation: μ=E⊥/B=const. ⇒ parallel e⁻ beam
 energy analysis by electrostatic retarding field

Molecular tritium sources: WGTS & QCTS

- 2 sources: independent measurements with different systematic effects
- WGTS Windowless Gaseous Tritium Source
 - 10 m tritium tube with 90 mm diameter operated at 30 K
 - high-purity molecular tritium (95 %)
 - injection rate 2.1 Ci/s (20 g T_2 per day)
 - allows to measure near to maximum count rate

QCTS - Quench Condensed Tritium Source

- thin molecular T_2 film quench condensed on highly oriented pyrolithic graphite crystal
- thickness 35 nm, source diameter 80 mm, temperature 1.6 K
- energy resolution 2-3 eV
- effective lifetime 300 days
- activity 0.95 Ci

Detector requirements

- large sensitive area
- high efficiency for 18.57 keV electrons
- good energy resolution
- low electronic noise
- longterm operation
- strong magnetic fields
- for test + calibration: high count rates
- silicon drift diodes
 - thin dead layer in order to reduce energy loss
 - segmented detector of 120 mm diameter
 - expected resolution at 18.6 keV: △E=230 eV

KATRIN discovery potential

- estimated total systematic error σ =0.016 eV²
- statistical & systematic errors will contribute almost equally
- KATRIN sensitivity if no neutrino mass signal + 3 year measuring time
 - $m_v < 0.2 \text{ eV}$ (90 % CL)
- KATRIN discovery potential if evidence for neutrino mass signal
 - $m_v = 0.35 \text{ eV} (5\sigma)$
 - $m_v = 0.30 \text{ eV} (3\sigma)$

Mainz results

Troitz results

History of tritium β -decay exp.

