INTRODUCTION TO NUCLEAR MODELS

Daniel Kollar – Friday Physics Session

NUCLEUS BASICS

${}^{A}_{Z} {\mathbf{X}}_{N}$ with	Z – proton numbA=Z+NN – neutron numA – atomic/weight	nber	$^{76}_{32}\text{Ge}_{44}$
size: $R \cong R$	$A^{\frac{1}{3}}$ $R_{0} \cong 1.2 \text{fm}$		$R \cong 5.1 \text{fm}$
mass: m(X) <	$Zm_p + Nm_n$ (that	s why it holds toget	ther)
binding energy	$B(Z,N) = \left[Zm_p + Nm\right]$	$_{n}-m(Z,N)]\cdot c^{2}$	
	$B(^{76}\text{Ge}) = [36m_p + 44]$	$[m_n - m(^{76}\text{Ge})] \cdot c^2$	= 661.6 MeV
	Fe Fe fusion	U fission	

0 1

50

100

150

200

250

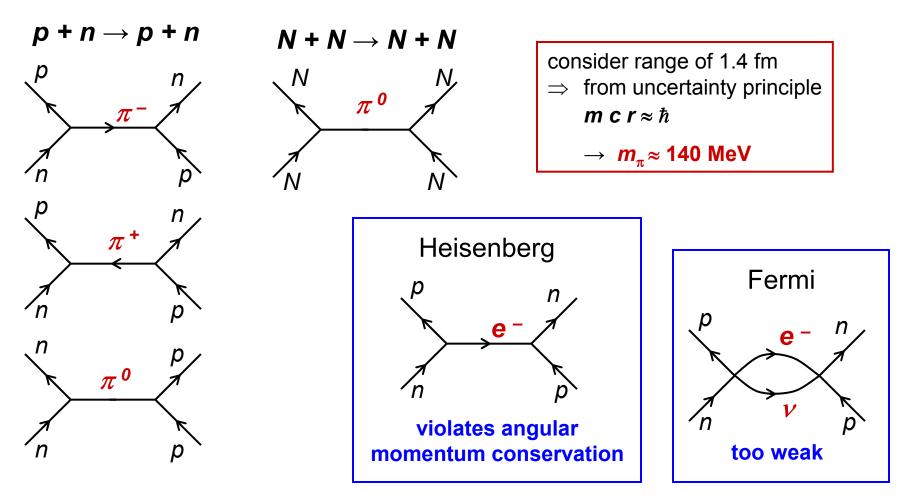
Α

NUCLEAR FORCES

short range, spin-orbital character

YUKAWA THEORY OF NUCLEAR FORCES

based on exchange of π^0 , π^+ , and π^-



NUCLEAR MODELS

- total *wavefunction* of the nucleus is far too complicated to be useful even if it was possible to calculate it (only possible for the lightest nuclei)
- \Rightarrow we make use of models and use simple analogies

Types of nuclear models

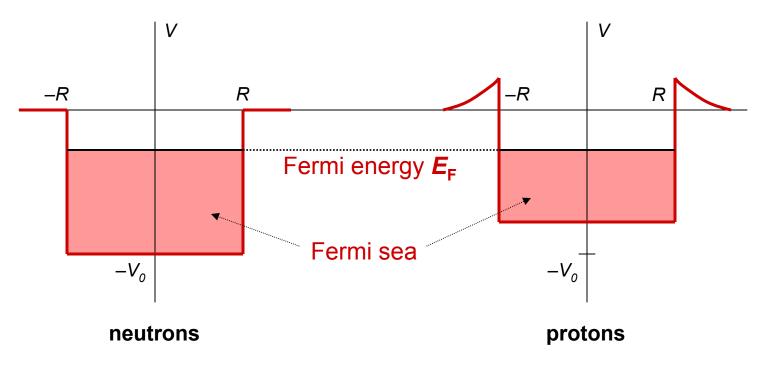
	Semiclassical	Quantum mechanical
Independent particle	Fermi gas	Shell
Collective	Liquid drop	Rotational Vibrational

FERMI GAS MODEL

Built on analogy between nucleus and ideal gas

- particles don't interact
- particles move independently in the mean field of the nucleus

Ground state \rightarrow particles occupy lowest energy states allowed by the Pauli principle



FERMI MODEL

Distribution of nucleon momentum states: $dn = \frac{2Vd^3p}{(2\pi\hbar)^3}$ • total number of states up to F .

- total number of states up to E_F : $n = \int dn$
 - momentum \rightarrow energy

$$-n_{p} = Z; n_{n} = A - Z$$

- volume $\Rightarrow V = 4/3 \pi r_{0}^{3} A$

• Fermi enerav:

$$E_{F}^{p} = \frac{\hbar^{2}}{2mr_{0}^{2}} \left(\frac{9\pi}{4} \cdot \frac{Z}{A}\right)^{\frac{2}{3}} \qquad E_{F}^{n} = \frac{\hbar^{2}}{2mr_{0}^{2}} \left(\frac{9\pi}{4} \cdot \frac{A-Z}{A}\right)^{\frac{2}{3}}$$

 \rightarrow for Z = A - Z = A/2 $E_F = \text{const} \cdot \frac{1}{m}$ \Longrightarrow equal for all nuclei $E_{F} \approx 30 \text{ MeV}$ ($V_{0} \approx 40 \text{ MeV}$)

NUCLEAR LIQUID DROP MODEL

Weizsäcker formula for the binding energy ($A \ge 30$)

$$B(A,Z) = a_{V} \cdot A$$

$$condensation energy \propto V$$
holding nucleus together
$$-a_{S} \cdot A^{\frac{2}{3}}$$
surface tension $\propto S$
near-surface nucleons are bound less
$$-a_{C} \cdot Z(Z-1) \cdot A^{-\frac{1}{3}}$$
Coulomb potential
$$-a_{A} \cdot (A-2Z)^{2} \cdot A^{-1}$$
asymmetry
$$-\Delta$$

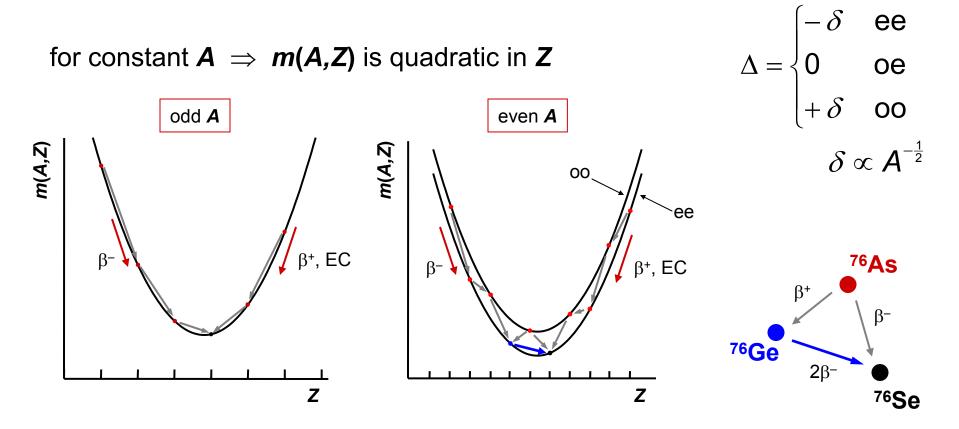
$$\Delta = \begin{cases} -\delta \quad \text{even-even} \quad \text{pairing energy} \\ 0 \quad \text{even-odd} \quad \delta \propto A^{-\frac{1}{2}} \\ +\delta \quad \text{odd-odd} \end{cases}$$

NUCLEAR LIQUID DROP MODEL

Weizsäcker formula for the mass of the nucleus

$$m(A,Z) = Zm_{p} + (A - Z)m_{n} - B(A,Z)$$

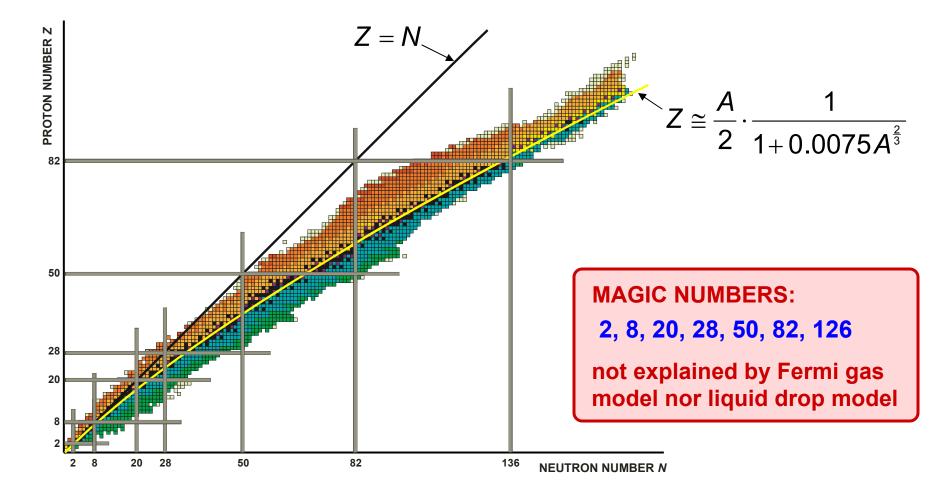
$$m(A,Z) = Zm_{p} + (A - Z)m_{n} - a_{V}A + a_{S}A^{\frac{2}{3}} + a_{C}Z(Z - 1)A^{-\frac{1}{3}} + a_{A}(A - 2Z)^{2}A^{-1} + \Delta$$



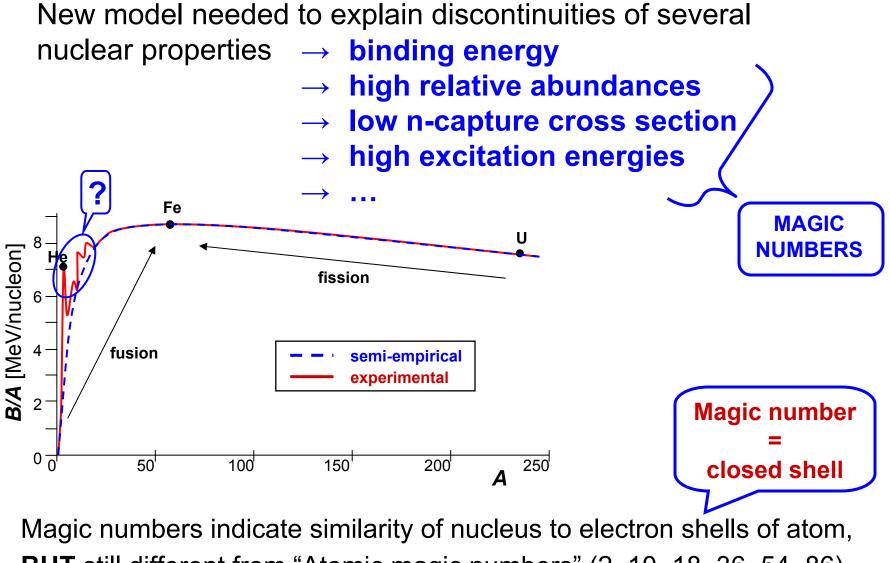
NUCLEAR LIQUID DROP MODEL

Valley of stability

 $m(A,Z) = Zm_{p} + (A-Z)m_{n} - a_{V}A + a_{S}A^{\frac{2}{3}} + a_{C}Z(Z-1)A^{-\frac{1}{3}} + a_{A}(A-2Z)^{2}A^{-1} + \Delta$ For fixed **A** the most stable **Z** is obtained by differentiating **m(A,Z)**



NUCLEAR SHELL MODEL – WHY?



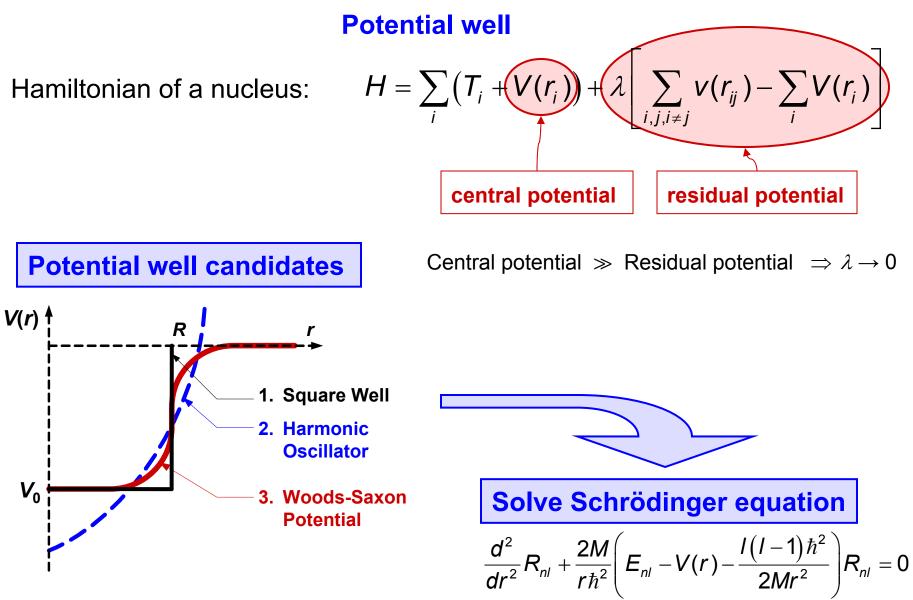
BUT still different from "Atomic magic numbers" (2, 10, 18, 36, 54, 86)

AIM \rightarrow Explain the magic numbers

ASSUMPTION \rightarrow	Interactions between nucleons are
	neglected

→ Each nucleon can move independently in the nuclear potential

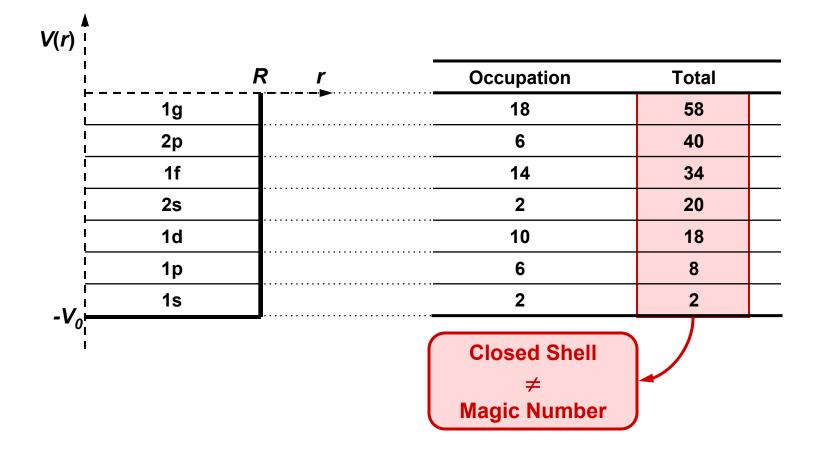
STEPS →	Find the potential well that resembles the
	nuclear density
\rightarrow	Consider the spin-orbit coupling



Square well potential

$$V_{0}(r) = \begin{cases} -V_{0} & r \leq R \\ 0 & r > R \end{cases}$$

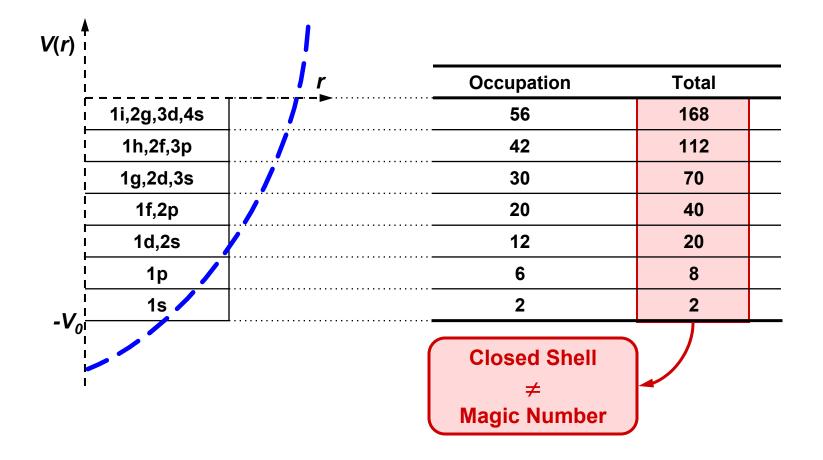
 \Rightarrow no analytical solution



Harmonic potential

$$V_0(r) = -V_0 + \frac{1}{2}M\omega^2 r^2$$

 \Rightarrow analytical solution possible



Woods-Saxon potential

resembles the nuclear density from scattering measurements

$$V_0(r) = -\frac{V_0}{1 + \exp\left(\frac{r-R}{a}\right)}$$

V(r)

 \Rightarrow no analytical solution

• (•)	_			
l	R	r	Occupation	Total
	1i,2g,3d,4s		56	168
	1h,2f,3p		42	112
	1g,2d,3s		30	70
I I	1f,2p		20	40
	1d,2s		12	20
r I L	1р		6	8
ī V	1s		2	2
-V ₀			Closed Shell	
I I			≠	
			Magic Number	

Spin-orbit coupling contribution

Maria Mayer (*Physical Review 78 (1950*), 16) suggested:

- 1. There should be a non-central component
- 2. It should have a magnitude which depends on S & L

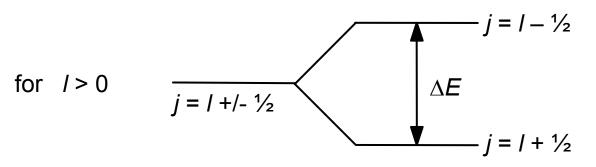
$$V(r) = V_0(r) + V_s(r) \mathbf{L} \cdot \mathbf{s}$$

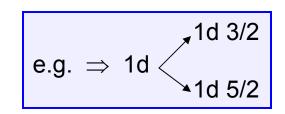
non-central potential

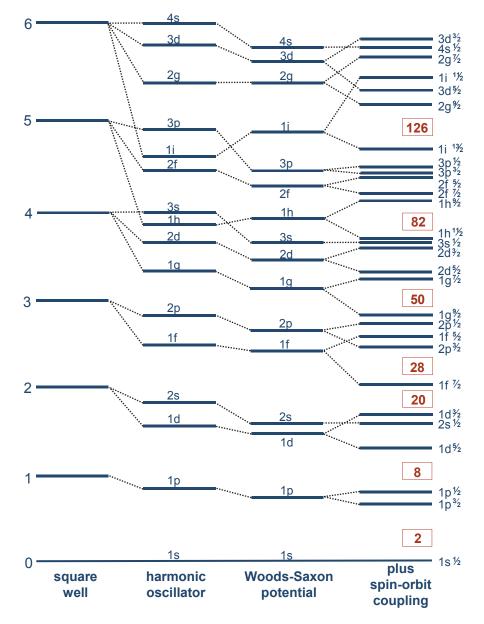
with
$$V_{s}(r) = V_{0s} \frac{1}{r} \frac{d}{dr} f(r)$$

Woods-Saxon shape

Results in **energy splitting** of individual levels for given *J* (angular momentum)







Level splitting

REMARKS

The essential features are given by any potential of the form $V(r) = V_0(r) + V_s(r) \mathbf{L} \cdot \boldsymbol{\sigma}$

Energies of levels are parameter dependent

Shell model fails when dealing with deformed nuclei, i.e., nuclei far from magic numbers

Collective models: rotational, vibrational

Other models

Close to **CLOSED-SHELL** nuclei well described by shell model

However, most of the nuclear properties are indeed determined by nucleons outside the closed shells

Models not mentioned (but used):

- 1. rotational model
- 2. vibrational model
- 3. Nilsson model
- 4. α -particle model
- 5. interacting boson model

 \rightarrow rotations of permanently deformed nuclei

- \rightarrow excitations within shell multipole account
- \rightarrow shell model with deformed potential
- $\rightarrow \alpha\text{-particle clusters}$ inside the nucleus
- \rightarrow considering pairs of nucleons as bosons