
INTRODUCTION TO NUCLEAR MODELS

NUCLEUS BASICS
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NUCLEAR FORCES

YUKAWA THEORY OF NUCLEAR FORCES

short range, spin-orbital character

based on exchange of π0, π+, and π–
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NUCLEAR MODELS
• total wavefunction of the nucleus is far too complicated to be useful even if it 

was possible to calculate it (only possible for the lightest nuclei)

⇒ we make use of models and use simple analogies

Collective

Independent particle

Quantum mechanicalSemiclassical

Types of nuclear models

Fermi gas Shell

Liquid drop Rotational
Vibrational



FERMI GAS MODEL

Built on analogy between nucleus and ideal gas
• particles don’t interact
• particles move independently in the mean field of the nucleus

Ground state → particles occupy lowest energy states 
allowed by the Pauli principle

Fermi energy EF
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FERMI MODEL

Distribution of nucleon momentum states: ( )3
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• total number of states up to EF:
– momentum → energy

– volume ⇒ ArV 3
034 π=
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NUCLEAR LIQUID DROP MODEL
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Weizsäcker formula for the binding energy (A ≥ 30)
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condensation energy ∝ V
holding nucleus together
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surface tension ∝ S
near-surface nucleons are bound less
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NUCLEAR LIQUID DROP MODEL
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Weizsäcker formula for the mass of the nucleus
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NUCLEAR LIQUID DROP MODEL
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Valley of stability
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For fixed A the most stable Z is obtained by differentiating m(A,Z)
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MAGIC NUMBERS:
2, 8, 20, 28, 50, 82, 126

not explained by Fermi gas
model nor liquid drop model



NUCLEAR SHELL MODEL  – WHY?
New model needed to explain discontinuities of several
nuclear properties
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semi-empirical
experimental

→ binding energy
→ high relative abundances
→ low n-capture cross section
→ high excitation energies
→ …

MAGIC
NUMBERS

Magic numbers indicate similarity of nucleus to electron shells of atom,
BUT still different from “Atomic magic numbers” (2, 10, 18, 36, 54, 86)

Magic number
=

closed shell



NUCLEAR SHELL MODEL

AIM → Explain the magic numbers

ASSUMPTION → Interactions between nucleons are 
neglected

→ Each nucleon can move independently  in 
the nuclear potential

STEPS → Find the potential well that resembles the 
nuclear density

→ Consider the spin-orbit coupling
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NUCLEAR SHELL MODEL

Hamiltonian of a nucleus: 

Potential well

central potential residual potential

2. Harmonic
Oscillator

3. Woods-Saxon
Potential

Central potential Residual potential ⇒ λ→ 0

1. Square Well

R rV(r)

V0

Potential well candidates
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Solve Schrödinger equation



Closed Shell
≠

Magic Number

NUCLEAR SHELL MODEL
Square well potential
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Closed Shell
≠

Magic Number

NUCLEAR SHELL MODEL
Harmonic potential
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Closed Shell
≠

Magic Number

NUCLEAR SHELL MODEL
Woods-Saxon potential
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resembles the nuclear
density from scattering
measurements



NUCLEAR SHELL MODEL

Maria Mayer (Physical Review 78 (1950), 16) suggested:
1. There should be a non-central component
2. It should have a magnitude which depends on S & L

Spin-orbit coupling contribution
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Woods-Saxon shape
non-central potential

Results in energy splitting of individual levels
for given J (angular momentum)

j = l +/- ½

j = l – ½

j = l + ½

∆Efor   l > 0
e.g.  ⇒ 1d

1d 5/2

1d 3/2



NUCLEAR SHELL MODEL
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Level splitting

The essential features are given 
by any potential of the form

( ) ( ) ( )0 sV r V r V r= + ⋅L σ

Energies of levels are parameter 
dependent

Shell model fails when dealing 
with deformed nuclei, i.e., nuclei 
far from magic numbers

REMARKS

Collective models:
rotational, vibrational



Other models

Close to CLOSED-SHELL nuclei well described by shell model
However, most of the nuclear properties are indeed determined by
nucleons outside the closed shells
Collective models → treating the closed shells as inert and only 

dealing with the rest

Models not mentioned (but used):
1. rotational model → rotations of permanently deformed nuclei

2. vibrational model → excitations within shell – multipole account

3. Nilsson model → shell model with deformed potential

4. α-particle model → α-particle clusters inside the nucleus

5. interacting boson model → considering pairs of nucleons as bosons


