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MotivationMotivation

● Important test for SM

● Deviations from SM become more enhanced with increasing CM energy 

● Mild excess in      found by ATLAS and CMS

● Dominant background for

● With higher CM energy, boosted topologies become much more important

● Lately a large number of jet substructure methods on the market

● Can be nicely used to discriminate S/B

● WW - production sensitive to anomalous triple gauge boson couplings (aTGCs) 
 

H→WW *

σ
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MotivationMotivation
● Semileptonic channel has a high branching ratio

                              

→  Gain factor 6 in statistics

● Full hadronic channel would  allow                                                                             
full control over WW system

● Already attempted → Impossible!                                                         

● Need hard lepton to trigger the event                                                                    
and suppress QCD - multijet events

● Downside:  

Detector resolution  too low to distinguish jets from W and Z

➔ Have to measure combined WW+WZ cross - section

➔ In turn gives better sensitivity to  aTGCs   (arXiv:1410.7238v1)  

 BR (WW→ jj l ν )≈29% ,   (l=e ,μ)

BR (WW→ l ν l ν )≈5%,    (l=e ,μ)
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ATLAS @ LHCATLAS @ LHC

2012 Data:            TeV,

● In the Muonstream alone, there are 725M recorded events, 46k of which are WW

● After event selection: Only 500 - 1000 signal events left 

∫ℒ dt=21 fb−1√s=8
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2. Boosted topologies and jet - substructure2. Boosted topologies and jet - substructure
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Why jet substructure?Why jet substructure?
● High center of mass energy at the LHC:

➔ Large amount of heavy particles is produced boosted and                         
decaying in a collimated (single jet like) final state

➔ Decay products are clustered into one jet with size

➔ Final state not resolvable with standard (narrow jet) techniques anymore 

→ Go to “fat jets“

➔ Fat jet mass is an important variable to identify decayed particles 

R≈
2m
pT
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Why jet substructureWhy jet substructure
● High luminosity:

➔ Additional pp - collissions per bunch crossing (pile-up) deteriorate jet mass and shape

➔ Need technique to separate internal energy flow structures from diffuse pile-up 
contributions for mass reconstruction 

● Jet grooming:

1. Filtering

2. Pruning

3. Trimming

● Jet substructure:

➔ Different techniques/variables to distinguish gluon - jets from  from heavy particle - jets
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Jet groomingJet grooming
Mass drop tagging plus filtering:

Pruning:

Trimming:Trimming:
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Jet groomingJet grooming
Mass drop tagging plus filtering:

Pruning:

Trimming:Trimming:
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WW - signatureWW - signature
● Event topology:

1. One W decays leptonically → one good lepton (e, muon) and missing ET

2. Other W decays hadronically and shall be boosted                                                           
→  Requiring one fat C/A-Jet with high      (150 GeV) which is „mass drop tagged“ 

● Fat jet:

1. Has to be in 

2.                GeV at constituentscale

3. Apply mass drop tagging → if fail, reject event

4. Apply filtering and use the three hardest subjets

● Jet substructure:

➔ Different techniques/variables to distinguish

gluon - jets from  from heavy particle - jets

pT

∣η∣<2.8

pT>150
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R - CoresR - Cores
● Calculation:

1. Recluster jet with smaller radius, can go from 0.4 until 1.2 

2. Look at ratio of      or m of smaller jets to whole fat jet

3. Expect values closer to 1 for signal 

pT
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Example: N - subjettinessExample: N - subjettiness
● N - subjettiness: N can go from 1 to infinity

● What it means: 

➔      means to what degree a particular jet can be regarded as a jet composed of N subjets

➔            : All radiation aligned with candidate subjets →  N or fewer subjets

➔             :  Significant energy distributed away from subjet directions                                  
→  At least N+1 subjets

τ N

τ N≈0

τ N≫0

Typical W - jet Typical gluon - jet 
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Example: N - subjettinessExample: N - subjettiness

● Best discrimination by using the ratio τN+1
τ N

● How is it calculated?      (arXiv:1011.2268)

● We look at one fat - jet 

● Then we identify N candidate subjets (force      - algorithm to return exactly N jets)

● k runs over the jet constituents and           is the distance between                       
the subjet J and the constituent k

τ N=a⋅∑
k

pT , kmin (Δ R1,k ,Δ R2, k ,... ,Δ RN ,k )

Δ R J , k

kT
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More substructure variablesMore substructure variables
● Many more variables can be used

1. N-subjettiness

2. Energy correlation functions

3. m(jet)/     (jet)

4.      and y from mass drop tagging

5. Filter-, pruning, trimming- to whole ratio in mass or pt

6. Number of subjets

7. Planar flow 

8. Kt-splitting scales 

● But discrimination power strongly decreases if jets are pre-selected to be in the          
W mass window 

μ

pT
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More substructure variablesMore substructure variables
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More substructure variablesMore substructure variables
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More substructure variablesMore substructure variables
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ProblemsProblems

● Substructure: 

Actually no bigger problems – seem to work pretty well

● Jet cleaning/overlap removal: 

➔ The „thin“ - AntiKt4-Jets are not important except to reject events with too much of them   

➔ Therefore need to remove jets if they overlap with electrons

➔ Plain          matching does not suffice or at least causes troubles

➔ Data/MC agreement is particularly worse in    

Δ R

Δ R( J1 , J2)
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3.Multivariate Methods3.Multivariate Methods
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Multivariate MethodsMultivariate Methods
● Idea of MV methods is to combine separating power of several variables into one

● Plain cuts would reject too many events

● MV methods take into account correlations between variables

● Have to be trained with Monte Carlo events

● Generally a very robust way to classify signal and background events as such
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ConclusionConclusion
1. Boosted topologies are a wide an interesting field which becomes 

increasingly important

2. Not the easiest channel, boost - requirement already throws away 
around ~96% of all signal events

3. Substructure is very powerful to disentangle S from B

4. Multivariate tools provide a good way to combine variables 
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Backup SlidesBackup Slides
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Example: N-subjettinessExample: N-subjettiness
● One typical  variable: N-subjettiness       (arXiv:1011.2268)

● We look at one W-jet (jet has W mass )

● Then we identify N candidate subjets (hardest      reclustered jets)

●

● k runs over the jet constituents and           is the distance between the subjet J 
and the constituent k

●                      is the original jet's radius.

τ N=
1
d 0

∑
k

pT ,k min(Δ R1,k ,Δ R2,k , ... , Δ RN ,k )

Δ RJ , k

d 0=∑
k

pT , k R0

pT
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Pile-up
● Two types of pileup

1. In time pileup

2. Out of time pileup

● In time pileup:

➔ Activity in the event from pp collisions in the same bunch crossing

➔ Can be characterized by       (number of primary vertizes) 

● Out of time pileup:

➔ Remaining signal in calorimeters from previous bunch crossings, due to long 
integration times → leads to negative cells/clusters 

N PV
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  N-subjettinessN-subjettiness
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Boosted decision treeBoosted decision tree
● Train tree with S/B events

● In each node, split tree according to best separation

● Until only leaves with purity above a certain threshold are left

● Increase the weight of events that fell on a wrong leaf

● Make a new tree

● Iterate this procedure N times

● As signal classified event gets output                                                                      
value of 1, other wise 0

● Sum over all trees and compute                                                                            
average output value

● This is the final output variable
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Separating signal and background
● Idea is to combine separating power of many little separating variables

● Solution: Multivariate method →  Artificial Neural Network (ANN)

● Very powerful at recognizing patterns → Classification

● Has to be trained with many signal and background events (~50k each)

How does it work?How does it work?
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Separating signal and background
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Separating signal and background
How does it work?How does it work?

● Not programmed, but trained 

● Supervised learning

● Feed the NN with all signal and bkg. events, where each is flagged as such

● After that (1 epoch) adjust weights of every synapse and node

● In signal case, answer at output layer shall be 1, other wise 0

● Train with some thousand epochs

● Apply trained network on data 
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Separating signal and background
● For training, use data instead of MC as background

● Assumption data is bkg only very well justified: S
B

≈2⋅10−5
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Separating signal and background
● Absolute amount of signal events still very small

● Cutting on the NN output would further reduce signal rate

● Better possibility: 

Run NN on data and then perform a fit of sig. and bg. output 
distributions to determine fraction of signal in data

● Access to the cross section

F (out)=f Sig⋅NN Sig+(1−f Sig)⋅NNBkg

Illustration

Orel Gueta,                                       
Tel Aviv University
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Neural Net
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