

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで 1/22

Updates in vertex resolution and optimization of tagged B meson vertex fit

Christian Roca Catalá

Max-Planck Institut für Physik - Belle 2 Collaboration

crisroc@mpp.mpg.de

19th International Workshop in DEPFET Detectors and Applications Kloster Seeon - May 10-13, 2015 $\begin{array}{c} {\rm Brief\ Introduction}\\ {\rm Reco\ side:\ }J/\psi\rightarrow\mu^+\mu^-\\ {\rm Effect\ of\ a\ misplaced\ Beam\ Spot\ in\ the\ B_{tag}}\\ {\rm Effect\ of\ Track\ selection\ on\ the\ B_{tag}\ Vertex}\\ {\rm Summary} \end{array}$

Table of contents

- Brief Introduction
- 2 Reco side: $J/\psi \rightarrow \mu^+\mu^-$
 - Motivation
 - Vertex Resolution Plots
 - Beam Spot position
- \bigcirc Effect of a misplaced Beam Spot in the B_{tag}
 - B_{tag} vertex fit algorithm and constraint
 - Shifted B_{tag} Vertex position plots
 - Shifted B_{tag} Vertex resolution plots
- 4 Effect of Track selection on the B_{tag} Vertex
 - Using the standard track selection algorithm
 - Using a new algorithm: Track's selection
 - Results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Brief Introduction

Reco side: $J/\psi \rightarrow \mu^+\mu^-$ Effect of a misplaced Beam Spot in the Btag Effect of Track selection on the Btag Vertex Summary

$\Upsilon(4S)$ resonance

- $b\bar{b}$ quarkonium resonance
- Resonance at C.M energy of 10.58 GeV
- Pairs $B^0 \overline{B}^0$ and $B^+ B^-$ produced practically at rest
- Slight boost $\beta \gamma \approx 0.28$

Reco side and Tag side

- Kin. reconstruction of $B^0(\bar{B}^0) \rightarrow J/\psi K_S$ (Reco side)
- Flavor tagging from $\bar{B}^0(B^0) \rightarrow \text{generic}$ (Tag side)

Motivation Vertex Resolution Plots Beam Spot position

$J/\psi \rightarrow \mu^+\mu^-$ vertex resolution

About the decay:

- J/ψ decays **immediately** after the B meson
- Two muons give a very clear signal

$$B_{rec} \rightarrow [J/\psi \rightarrow \mu^+ \mu^-] K_S$$

Why should we do J/ψ vertex analysis?

- Check the new tracking update
- The resolution of this vertex is one of the best resolutions we can get, so it gives us some hints about what is the maximum resolution we can aim for during the analysis of the B_{tag} Vertex.

Motivation Vertex Resolution Plots Beam Spot position

 $J/\psi \rightarrow \mu^+\mu^-$ VertexZ resolution: 3 Gaussian Fit

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

Motivation Vertex Resolution Plots Beam Spot position

Analysis: resolution and shift

Observations (R16924)

- VerteX, VertexY: no shift
- \bullet Improved resolution of 22.9 μm
- Shift on the $J/\psi \rightarrow \mu^+\mu^-$ vertex (z axis) of $1.8\,\mu{\rm m}$

Possible implications for the Beam Spot knowledge

- $\mu^+\mu^-$: cleanest vertex reconstruction- but still has a shift
- Beam spot assumed to be at (0,0,0)- but $e^+e^- \rightarrow \mu^+\mu^$ vertex reconstruction could give a shift as well
- Beam spot could have an unexpected shift ($\leq 1.8 \,\mu m$)

Motivation Vertex Resolution Plots Beam Spot position

Beam spot position analysis - $e^+e^- \rightarrow \mu^+\mu^-$ vertex

イロト イポト イヨト イヨト 一日

 $\begin{array}{l} \textbf{B}_{tag} \text{ vertex fit - algorithm and constraint} \\ \textbf{Shifted } \textbf{B}_{tag} \text{ Vertex position plots} \\ \textbf{Shifted } \textbf{B}_{tag} \text{ Vertex resolution plots} \end{array}$

イロト イポト イヨト イヨト 一日

Tag Side vertex analysis

Why is so important to have a good B_{tag} Vertex resolution?

- Being sensitive to time-dependent CP violating effects depends on the good measurement of Δt
- Δt is proportional to the distance between the decay vertices of B_{rec} and B_{tag} , i.e Δz

• The most important contribution to the Δt resolution comes from the B_{tag} vertex resolution

 $\begin{array}{l} \textbf{B}_{tag} \text{ vertex fit - algorithm and constraint} \\ \textbf{Shifted } \textbf{B}_{tag} \text{ Vertex position plots} \\ \textbf{Shifted } \textbf{B}_{tag} \text{ Vertex resolution plots} \end{array}$

Fitting algorithm

How is the fit performed?

- B_{rec} reconstruction uses specifically two muon tracks
- NO B_{tag} reconstruction is peformed (lost of statistics), DON'T LOOK FOR SPECIFIC DECAY MODE
- TagV fit uses all the remaining tracks (except for the ones coming from K_S decay)
- ALGORITHM: RAVE Adaptive Vertex Fit (AVF) with spatial constraints

 $\begin{array}{c} \text{Brief Introduction}\\ \text{Reco side: } J/\psi \rightarrow \mu^+\mu^-\\ \text{Effect of a misplaced Beam Spot in the B_{tag}}\\ \text{Effect of Track selection on the B}_{tag} \mbox{ Vertex}\\ \text{Summary} \end{array}$

 $\begin{array}{l} \textbf{B}_{tag} \text{ vertex fit - algorithm and constraint} \\ \textbf{Shifted } \textbf{B}_{tag} \text{ Vertex position plots} \\ \textbf{Shifted } \textbf{B}_{tag} \text{ Vertex resolution plots} \end{array}$

Fitting algorithm and spatial constraint

What is the constraint?

We define a **spatial constraint** where the B is expected to decay

- Ellipsoid of 600 µm diameter
- Centered in the Beam Spot
- Along the **boost direction**

RAVE Adaptive Vertex Fit (AVF) with constraints

No track is ever **rejected**. All of them are **weighted** following two criteria:

- Outlying and isolated tracks are down-weighted
- Tracks weighted according their position respect to the constraint

Weighting works iteratively

 $\begin{array}{l} \textbf{B}_{tag} \text{ vertex fit - algorithm and constraint} \\ \textbf{Shifted } \textbf{B}_{tag} \text{ Vertex position plots} \\ \textbf{Shifted } \textbf{B}_{tag} \text{ Vertex resolution plots} \end{array}$

Effect of possible shift in the Beam Spot

What did we find in Reco side?

- Unexpected **shift** on the $J/\psi \rightarrow \mu^+\mu^-$ vertex
- No shift on **Beam Spot** from $e^+e^- \rightarrow \mu^+\mu^-$ vertex

Spatial shift of the beam spot

Constraint for TagV fit **centered** in **beam spot**

 $\mathbf{1}$

Shift on beam spot \rightarrow effect on TagV resolution?

19th Workshop in DEPFET D&A

 $\begin{array}{l} \textbf{B}_{tag} \text{ vertex fit - algorithm and constraint} \\ \textbf{Shifted } \textbf{B}_{tag} \text{ Vertex position plots} \\ \textbf{Shifted } \textbf{B}_{tag} \text{ Vertex resolution plots} \end{array}$

Analysis of a shift in the constraints - generic decay

How did we implement the shift?

We want to check the effect of a shift on the constraint center

- Shift introduced only in the Z axis of the Beam Spot
- Constraints will now be centered at (0,0,shift)
- Several shifts from -100 μm to 100 μm
- Check TagV resolution and position for each shift

 $\begin{array}{l} B_{tag} \mbox{ vertex fit - algorithm and constraint} \\ \textbf{Shifted B}_{tag} \mbox{ Vertex position plots} \\ Shifted B_{tag} \mbox{ Vertex resolution plots} \end{array}$

Shifted B_{tag} Vertex position plots

POSITIVE SHIFT

NEGATIVE SHIFT

NEGLIGIBLE EFFECT FOR SHIFT < 50 µm

 $\begin{array}{l} B_{tag} \text{ vertex fit - algorithm and constraint} \\ \text{Shifted } B_{tag} \text{ Vertex position plots} \\ \text{Shifted } B_{tag} \text{ Vertex resolution plots} \end{array}$

Shifted B_{tag} Vertex resolution plots

POSITIVE SHIFT

NEGATIVE SHIFT

NEGLIGIBLE EFFECT FOR SHIFT < 50 µm

Using the standard track selection algorithm Using a new algorithm: Track's selection Results

Using the standard track selection algorithm

As explained before...

- Take all the unused tracks after the $B^0(\bar{B}^0) \rightarrow J/\psi K_S$ reconstruction
- As said before: perform the fit using RAVE (AVF)
- Only tracks coming from K_S are **avoided**. Take all the rest and weight them

NOTE: Take tracks even though they may not directly come from a B meson

イロト イポト イヨト イヨト 一日

 $\begin{array}{c} \mbox{Brief Introduction}\\ \mbox{Reco side: } J/\psi \rightarrow \mu^+\mu^-\\ \mbox{Effect of a misplaced Beam Spot in the B_{tag}}\\ \mbox{Effect of Track selection on the B_{tag}}\\ \mbox{Summary Summary S$

Using the standard track selection algorithm Using a new algorithm: Track's selection Results

TagV Resolution - Standard algorithm

 Resolution = 89 µm-37% improve Resolution = 0.92 ps-15% improve

Э

16/22

WHAT IF WE CHOOSE ONLY PRIMARY TRACKS?

Christian Roca Catalá

19th Workshop in DEPFET D&A

Using the standard track selection algorithm Using a new algorithm: Track's selection Results

Improving the track selection procedure

What is the track's selection?

- FlavorTagger module (previous talk) chooses the more suitable tracks for Flavor Tagging
- Store those tracks and variables (targProb, catProb...)
- Use those variables to discriminate good from bad tracks

Good tracks...

- Tracks coming from B_{tag} directly (primary lepton)
- Tracks coming from immediately decaying sons like D^{*+} (slow pion)
- Perform a fit (RAVE) using good tracks! (ideal case)

 $\begin{array}{c} \mbox{Brief Introduction}\\ \mbox{Reco side: } J/\psi \rightarrow \mu^+\mu^-\\ \mbox{Effect of a misplaced Beam Spot in the B_{tag}}\\ \mbox{Effect of Track selection on the B_{tag}}\\ \mbox{Summary Summary S$

Using the standard track selection algorithm Using a new algorithm: Track's selection Results

Preliminary analysis - semileptonic decay

$$B_{tag}
ightarrow \mu^- ar{
u}_\mu D^{(*)+}$$

and conjugate

USING ALL TRACKS

USING MC MATCHED MUONS

Using the standard track selection algorithm Using a new algorithm: Track's selection **Results**

Actual analysis - Generic decay (work still on progress)

 $B_{\textit{tag}} \rightarrow \text{generic}$

Purity analysis

- Perform several cuts on the variables of the tracks
- Compare with Monte Carlo information
- Aim: Kill the bad ones and keep the good ones!
- High purity acquainted after selection

Normalized distribution of Purities

Using the standard track selection algorithm Using a new algorithm: Track's selection **Results**

イロト イポト イヨト イヨト 一日

Unfortunately...

Work is still in progress:

- Selection cuts already implemented
- Vertex fitting not implemented
- Outlook: Resolution and Δt plots

Summary

Shift in the Reco side and its implications

- $J/\psi \rightarrow \mu^+\mu^-$ vertex with better resolution (22.9 µm) than Belle analysis.
- $J/\psi \rightarrow \mu^+\mu^-$ vertex shifted $\sim 1.8\mu m$ from MC.
- Possible shift on Beam Spot: negligible effect on Btag Vertex res/pos

Tag side resolution and optimization

- B_{tag} Vertex with better resolution (56.0 μm) than Belle analysis.
- New algorithm for selecting good tracks for Tag side vertexing
- Former studies: Better resolution ($\sim 15\%$) found for TagV with new algorithm
- So far: encouraging track's purity distribution

Outlook

- Understand the shift on the reco side vertex (new tracking update?)
- Improve as much as possible the efficiency of the cuts applied on the tag side
- Check the **goodness** of the **track's selection** on TagV resolution

 $\begin{array}{c} \mbox{Brief Introduction}\\ \mbox{Reco side: } J/\psi \rightarrow \mu^+\mu^-\\ \mbox{Effect of a misplaced Beam Spot in the B_{tag}}\\ \mbox{Effect of Track selection on the B_{tag}}\\ \mbox{Summary Summary S$

THANKS FOR YOUR ATTENTION!

Christian Roca Catalá 19th Workshop in DEPFET D&A