

Solar polarimetry and the need for fast and low-noise detectors

Alex J. Feller

Max Planck Institute for Solar System Research

May 10, 2015

Outline

Today's challenges in solar physics

Polarization as magnetic field diagnostics

The difficulties of measuring polarization

State of the art

DEPFET sensors for solar polarimetry?

The solar atmosphere: complex, dynamic and magnetized

The solar atmosphere is dynamic in all temperature regimes

- from the "cool" photosphere (\sim 5800 K)
- through the chromosphere and transition region
- up to the hot corona (\sim 2 MK)

The dynamics & activity of the solar atmosphere are driven by its *magnetic field*

The solar atmosphere: complex, dynamic and magnetized

The solar atmosphere is dynamic in all temperature regimes

- from the "cool" photosphere (\sim 5800 K)
- through the chromosphere and transition region
- up to the hot corona (\sim 2 MK)

The dynamics & activity of the solar atmosphere are driven by its *magnetic field*

The solar atmosphere: complex, dynamic and magnetized

The solar atmosphere is dynamic in all temperature regimes

- from the "cool" photosphere (\sim 5800 K)
- through the chromosphere and transition region
- up to the hot corona (\sim 2 MK)

The dynamics & activity of the solar atmosphere are driven by its *magnetic field*

How are the different layers of the solar atmosphere energetically linked?

- Energy loading of the solar plasma due to interaction between turbulent convection and "frozen-in" magnetic field at fundamental scales < 100 km
- Energy transfer and dissipation in higher atmospheric layers (e.g. coronal heating problem)
- Particular focus on the complex and poorly studied *chromosphere*: key interaction region between magnetic fields, waves, flows, radiation

"Hidden" magnetic flux ... or why we have to care about the details!

Figure : Tujillo-Bueno et al. 2004, Nature 430, 326

- Relying solely on the Zeeman effect as diagnostic tool, we seem to miss most of the solar magnetic flux!
- Problem: cancelling of Zeeman signals below our spatial resolution limit
- Hanle diagnostics used by Trujillo et al. is not affected by cancellation
- The total "hidden" magnetic flux in the quiet Sun seems to be \sim 1000 times larger than the flux in sunspots!

Sun - Earth connection

How does *solar activity* affect our natural and technical environment?

- Solar wind, space weather
- Solar activity cycle
- Solar irradiance variations

Sun - Earth connection

How does *solar activity* affect our natural and technical environment?

- Solar wind, space weather
- Solar activity cycle
- Solar irradiance variations

Polarized light as magnetic field diagnostics

- Polarization is a phase property of light
- Magnetic fields influence polarization via
 - interaction with atomic angular momentum (Zeeman effect)
 - or in the context of coherent scattering processes (Hanle effect)
- Polarimetry: encode polarization state into periodic intensity modulation

Polarized light as magnetic field diagnostics

Figure : Schlichenmaier & Collados 2002

- Polarization is a phase property of light
- Magnetic fields influence polarization via
 - interaction with atomic angular momentum (Zeeman effect)
 - or in the context of coherent scattering processes (Hanle effect)
- Polarimetry: encode polarization state into periodic intensity modulation

Polarized light as magnetic field diagnostics

- Polarization is a phase property of light
- Magnetic fields influence polarization via
 - interaction with atomic angular momentum (Zeeman effect)
 - or in the context of coherent scattering processes (Hanle effect)
- Polarimetry: encode polarization state into periodic intensity modulation

Why do we need fast detectors?

- Polarimetry is extremely sensitive differential photometry
- Polarization measurement can be affected by image instabilities caused by
 - turbulence of the Earth's atmosphere (seeing)
 - instrumental jitter
- Typical seeing time scale: < 10 ms
- Adaptive optics cannot increase polarimetric accuracy

Why do we need fast detectors?

Figure : Nagaraju & Feller, 2012

- Polarimetry is extremely sensitive differential photometry
- Polarization measurement can be affected by image instabilities caused by
 - turbulence of the Earth's atmosphere (seeing)
 - instrumental jitter
- Typical seeing time scale: < 10 ms
- Adaptive optics cannot increase polarimetric accuracy

Why do we need fast detectors?

Post-facto image restoration is needed

- to reach highest spatial resolution and contrast
- across the whole field of view
- and to increase S/N by averaging w/o losing spatial resolution

Figure : Fast Solar Polarimeter: single frames, 2s reconstructed images, and 36s average of reconstr. images

Why do we need low-noise and photon-efficient detectors?

The Sun is not bright when you look closely!

- Seeing forces us to expose individual frames for less than 10 ms
- *Solar evolution* forces us to reach the required S/N typically within order 10 seconds
- One sensor pixel only samples \sim 1/billionth of the solar surface
- with a spectral bandwidth corresponding to \sim 1/millionth of the total intensity of sunlight
- In strong chromospheric spectral lines the solar flux can drop well below 100 photons per pixel and frame

Zurich IMaging POLarimeter (ZIMPOL)

Figure : Current ZIMPOL-3 camera equipped with an E2V CCD55-30bi with 1280 x 1152 pixels and cylindrical microlenses

- Developed at ETH Zurich since 1990
- On-sensor polarization demodulation
 - by shifting the photo charges between 1 open and 3 covered rows
 - in phase with the polarization modulation
- Very high modulation frequencies up to 40 kHz \rightarrow seeing completely negligible!

Zurich IMaging POLarimeter (ZIMPOL)

Figure : ZIMPOL on-sensor demodulation principle (Povel 2001)

- Developed at ETH Zurich since 1990
- On-sensor polarization demodulation
 - by shifting the photo charges between 1 open and 3 covered rows
 - in phase with the polarization modulation
- Very high modulation frequencies up to 40 kHz → seeing completely negligible!

Zurich IMaging POLarimeter (ZIMPOL)

Disadvantages:

- Effective number of pixels is reduced by factor 4
- Large difference in spatial resolution between x and y dimensions
- Pixel crosstalk (straylight) between open and covered rows
- Slow: current ZIMPOL-3 only runs at \sim 1 fps

Figure : ZIMPOL on-sensor demodulation principle (Povel 2001)

ZIMPOL is not suitable for solar imaging polarimetry at highest spatial resolution!

Imaging Magnetograph eXperiment (IMaX)

- Imaging polarimeter onboard the Sunrise balloon borne solar telescope
- Dual-beam technique: strictly simultaneous measurement of 2 polarization states
- Polarimetric sensitivity level of order 0.1%

Imaging Magnetograph eXperiment (IMaX)

Disadvantages:

- differential effects between the 2 beams
- uncorrected crosstalk between linear and circular polarization
- slow (only 1 complete pol. measurement per s)

- Collaboration with PNSensor and HLL since 2012, funded by MPG and EC FP7 (SOLARNET)
- Based on
 - pnCCD sensor operated at 400 fps
 - ferro-electric liquid crystals for polarization modulation
- Development in 2 phases:

2012-2014 Proof of concept with small pnCCD prototype (264x264 pixels²), single-beam

2014-2016 Development of full-scale, science-ready version with 1kx1k pnCCD, dual-beam

Figure : FSP prototype setup at the German VTT solar observatory, Tenerife

Figure : FSP prototype setup at the German VTT solar observatory, Tenerife

Main specifications

	FSP I	FSP II
Sensor size	264 px x 264 px	1024 px x 1024 px
Max. frame rate	800 fps	400 fps
Pixel pitch	48 μ m	36
QE > 90%	500 nm - 870 nm	350 nm - 500 nm
Duty cycle	97%	95%
RMS readout noise	3 - 4 e ⁻	
Sensitive subst. depth	4 50 μ <i>m</i>	
Readout ASICS x number	CAMEX x 4	VERITAS-1 x 16
Max. data rate	0.78 Gb/s	6.7 Gb/s

Key concepts

- Fast split frame transfer + numerical transfer correction
- Column-parallel readout
- Multi-correlated double-sampling to reduce noise
- Custom coating to optimize QE
- Thick substrate \rightarrow no internal fringing

Sensor layout scheme

From Ordavo et al. 2011

DEPFET Infinipix

Figure : J. Treis

- ZIMPOL-like, very high-frequency (order 10 kHz or above) on-sensor polarization demodulation
- 100% fill factor, no covered sensor columns
- high frame rate (\sim 100 fps) still allows for high spatio-temporal resolution
- based on superpixel structure with 4 FET cells, i.e. one FET for each modulation state
- Shield electrodes induce periodic photo-charge drifting between the 4 FETs

DEPFET Infinipix

Next steps

- EC "Horizon 2020" funding available for 2016 2019
- First conceptual study in terms of numerical simulations
- Test of a small prototype sensor (32 x 32 superpixels) to assess the true potential for polarimetry

Figure : J. Treis

Summary

- Polarimetry is the main diagnostic tool for magnetic fields, which drive all solar activity as well as the still enigmatic energy transfer through the solar atmosphere
- Error sources like seeing and jitter require fast polarization modulation of order 100 Hz
- Rapid solar evolution, short exposure times, and highly selective spatial and spectral sampling leave us in a photon starved regime
- Fast, low-noise and photon efficient detectors, like pnCCDs or sCMOS sensors, are the key technology for today's solar polarimetry
- On-sensor demodulation concepts like DEPFET Infinipix represent a very promising future technology for our field of research