

Detector Challenges in Photon Science.

Heinz Graafsma

DESY-Hamburg; Germany & University of Mid-Sweden

Outline

- > Photon Science and the detector challenge
- > Synchrotron storage rings
 - The LAMBDA system
- > X-ray Free Electron Lasers
 - § The DSSC system
 - § The AGIPD system
- > XUV Free Electron Lasers
 - § The PERCIVAL system
- > Future directions

From fundamental to applied science

Study of extremely charged ions

Structure of viruses

Nature 470, 78 (2011)

Authentication of paintings

Photon-Science at large scale X-ray facilities

PETRA III

FLASH I + II

European XFEL

The Detector Challenge:

Outline

- > Photon Science and the detector challenge
- > Synchrotron storage rings
 - The LAMBDA system
- > X-ray Free Electron Lasers
 - § The DSSC system
 - § The AGIPD system
- > XUV Free Electron Lasers
 - § The PERCIVAL system
- > Future directions

Storage Ring Sources: general observations

PETRA III

- Pulsed X-ray source
- ~ Giga Hz rep-rate
- Treated as a continuous, random source
- Main photon range: 5-30 keV
- Few stations <1 keV
- Few stations > 100 keV
- 30 large synchrotrons world-wide
- ~ 800 end-stations

Hybrid Pixel Array Detectors (HPADs)

Particle / X-ray à Signal Charge à Electr. Amplifier à Readout à Digital Data

Heinz Graafsma | Page 10

Medipix-3: Communicating pixels

Medipix-3: Communicating pixels

Communicating pixels è better energy resolution

Medipix3 readout chip

- > Collaboration of ~20 groups led by CERN
- > Flexible pixel design
 - § 2 counters and thresholds per 55µm pixel, plus interpixel communication
- > Applications:
 - § Fast, deadtime-free frame readout
 - 2000 fps @ 12 bit depth
 - Senergy binning with charge summing
 - § Pump / probe...

Large Area Medipix3 Based Detector Array (LAMBDA)

High-Z pixel detectors

- > Aim: Increase efficiency at 50 keV by factor of 10
 - Seplace silicon sensor in LAMBDA with high-Z semiconductor
 - Sombine high QE with hard X-rays, high frame rate, high signal-to-noise
- Investigating different materials in collaboration with other institutes and industry
 Photoelectric absorption of X-rays
 - S Cadmium telluride
 - § Gallium arsenide
 - § Germanium

High-Z sensors

- > CdTe, GaAs and Ge can be used for experiments
- > Each material has strengths and weaknesses
 - SCdTe most well-established, still some problems with uniformity and stability
 - Sea GaAs widespread but correctable non-uniformity very limited supply
 - Sermanium technology now works but high cooling power for large systems

Outline

- > Photon Science and the detector challenge
- > Synchrotron storage rings
 - § The LAMBDA system
- > X-ray Free Electron Lasers
 - § The DSSC system
 - § The AGIPD system
- > XUV Free Electron Lasers
 - § The PERCIVAL system
- > Future directions

The European X-ray Free Electron Laser

- 17.5 GeV linear electron accelerator (3.4 km)
- producing 5-25 keV x-rays (tunable) through FEL process
- unprecedented peak brilliance
- user facility: common infrastructure shared by many experiments

Switch Building (Osdorfer Born)

DESY

Experimental Hall (Schenefeld)

The XFEL-Challenge: Different Science

The Holy Grail ?

Electron bunch trains; up to 2700 bunches in 600 msec, repeated 10 times per second. Producing 100 fsec X-ray pulses (up to 27 000 bunches per second).

What are the challenges ?

Three dedicated Projects:

- Depfet Sensor with Signal Compression
 Non-linear gain, digital storage
- Adaptive Gain Integrating Pixel Detector Automatic adaptive gain, analogue storage
- Large Pixel Detector

Three parallel gains, analogue storage

- > DEPFET per pixel
- > Very low noise (good for soft X-rays)
- > non linear gain (good for dynamic range)
- > per pixel ADC
- > digital storage pipeline
 - > Hexagonal pixels 200mm pitch
 - combines DEPFET
 - with small area drift detector (scaleable)

- > MPI-HLL, Munich
- > Universität Heidelberg
- > Universität Siegen
- > Politecnico di Milano
- > Università di Bergamo
- > DESY, Hamburg

DSSC - DEPFET Sensor with Signal Compression

DEPFET: Electrons are collected in a storage well \Rightarrow Influence current from source to drain

The Adaptive Gain Integrating Pixel Detector (AGIPD)

Adaptive Gain principle

High dynamic range:

Dynamically gain switching system

AGIPD readout principle

- 200 x 200 micron² pixels
- 352 storage cells + veto possibilities.
- Minumum signal ~ 300 e⁻ = 0.1 photon of 12.4keV
- Maximum signal ~ 33 10⁶ e⁻ = 10⁴ photons of 12.4keV
- 4.5 MHz frame rate
- 64 x 64 pixels per ASIC
- 2 x 8 ASICs per module (128x512 pixels, no dead area)
- 4 modules per quadrant

A 1M pixel camera with a variable hole

The Real thing

Experiments: AGIPD module @APS

Single bunch imaging – a challenge to find processes fast enough

Experimental setup

- . Drilled equidistant holes into a DVD
- DVD covered with zinc paint to increase absorption
- . Mounted DVD on a fast electric motor
- . Measurement of hole to hole frequency
- with diode and oscilloscope:

1.208kHz

Experiments: AGIPD module @APS

Single bunch imaging is possible even at a repetition rate of 6.5MHz!

Outline

- > Photon Science and the detector challenge
- > Synchrotron storage rings
 - § The LAMBDA system
- > X-ray Free Electron Lasers
 - § The DSSC system
 - § The AGIPD system
- > XUV Free Electron Lasers
 - § The PERCIVAL system
- > Future directions

(Pixelated Energy Resolving CMOS Imager, Versatile And Large)

Soft X-ray imaging MAPS for (X)FELs and synchrotrons

- > Aim: develop X-ray imager for FELs' and Storage Rings
- > 250eV-1keV, 2Mpixel & 13Mpixel, 27 micron pixels, 120Hz frame rate, 1-10⁵ photons/pixel. Fully functional below 250 eV and above 1 keV.
- > Partners: DESY, RAL/STFC, Elettra, Diamond (DLS) & Pohang Light Source (PAL)
 - Sensor developed at RAL,
 - System developed DESY, Elettra, DLS and PAL
 - Sonly digital information coming off the chip
 - § Readout development build upon / re-use XFEL and AGIPD developments
- > Project timeline
 - STS1.2 to be tested this summer
 - First full 2M system 2016

Sensor

Outline

- > Photon Science and the detector challenge
- > Synchrotron storage rings
 - § The LAMBDA system
- > X-ray Free Electron Lasers
 - § The DSSC system
 - § The AGIPD system
- > XUV Free Electron Lasers
 - § The PERCIVAL system
- > Future directions

Hybrid pixel detectors for future experiments

Current hybrid pixel technology

Hybrid pixel detectors for future experiments

Heinz Graafsma | Page 58

ASIC developments

- Profit from Moore's law: increased functionality per unit area
 smaller pixels or smarter pixels or both.
- Profit from increased radiation hardness for deep sub-micron CMOS

Example: Detectors for the European XFEL: 4.5 MHz, 2700 images, tens of MGy

3D Evolution of the AGIPD ASIC

Terabit communications: Proof-of-principle

The Vision: Terabit/s I/O in particle detectors

- Intimate co-integration of photonics and electronics for terabit communications
- Fast readout of full detector: Get raw data out for "offline processing" in data center
- Less electronics and more detectors in detector volume
- Less mass in detector for higher accuracy

Diffraction limited storage rings

ESRF "orange book"; phase-II upgrade.

Heinz Graafsma | Page 64

Diffraction limited storage rings (ESRF)

			· · · · · · · · · · · · · · · · · · ·			
Lattic		Lattice	RMS source size [µm]		RMS divergence [µrad]	
Circu			н	V	н	v
Beam	10 keV	Present low beta	49.8	6.2	105.6	5.1
Beam		Present high beta	411.6	6.2	11.5	5.1
Natur		New lattice	28.2	6.1	7.2	5.1
Energ	50 keV	Present low beta	49.6	4.4	105.5	4.5
		Present high beta	411.6	4.4	11.2	4.5
		New lattice	27.8	4.4	6.8	4.4

Small <u>AND</u> parallel beam

LCLS-II: a CW X-ray Free Electron Laser

LCLS-II

The conceptual design:

- Adds a new, 4 GeV superconducting linac in an existing SLAC tunnel, avoiding the need for excavation.
- Increases the repetition rate from 120 pulses per second to 1 million per second. It will be the world's only X-ray free-electron laser capable of supplying a uniformly-spaced train of pulses with programmable repetition rate.
- Provides a tunable source of X-rays, by replacing the existing undulator (used to generate X-ray laser pulses) with two new ones. This ability to tune the X-ray energy on demand will enable scientists to scan across a wide spectrum – opening up new experimental techniques and making efficient use of the valuable beam time.
- Provides access to an intermediate X-ray energy range that is currently inaccessible with LCLS, but which is likely critical for studies of new materials, chemical catalysis and biology.
- Extends the operating range of the facility from its current limit of ~11 keV x-rays to ~25 keV.
- Supports the latest <u>seeding</u> technologies to provide fully coherent X-rays (at the spatial diffraction limit and at the temporal transform limit)

Summary

- > New detectors have and will enable new photon-science
- > Dedicated detector developments are needed to profit from source developments
- > Detector developments for photon-science are at the forefront
- > The next 5 years will see a continued development detectors at photon sources
- The new photon sources will require new detector concepts

