

Direct Electron Detectors with DEPFETs

Rainer Richter

for the MPG Halbleiterlabor

Requirements on an electron detector and how they can be fulfilled

with **DEPFETs**

Focus on real space applications (80kHz detector)

Direct Electron Detectors with Depfets ?

What is needed?

1. thin detector

50µm thick detector With 200µm pass. Si support structure

300keV electron beam, MC Geant4 by Ibrahym Dourki

Direct Electron Detectors with Depfets ?

What is needed?

1. thin detector

50µm thick detector with 200µm pass. Si support structure

50µm thick detector without 200µm support structure carbon beam stop 20mm beneath

works only at very low power consumption !

Modulation Transfer Function (MTF)

No problem

1 primary electron in 50um Si

-> about 5000 e/h

Well known from Belle2 pixel detector even at high speed \odot

Low noise of DEPFET – small Internal Gate capacitance !!

as in Belle ...

- 100ns row processing time (DCD)
- 4-fold readout

512 x 512 sensor array (currently in production)

-> 12.5 µs (80kHz)

4. high dynamic range (i)

Sascha Epp: 50 better 100 primary electrons

► 100 el/px Poisson only

> 100 keV

- pitch black = 1000 A sample
- > very white = 0 A sample
- 0..1000A in 256 steps

100 primary e- (300keV, 50um) -> 500 000 signal e- to be stored

Charge handling capacity of a Belle DEPFET: 50 000 e-

Very small Internal Gate capacitance ...

DEPFET technology

offers a simple natural solution

What happens if the Internal Gate is full?

The DSSC-DEPFET for the XFEL Project

Input capacitance increases if charge spills over

DEPFET response: charge storage and signal compression at once

MPG

DSSC concept suitable for electron detection?

What about the Belle design?		
Thinned detector (50µm PXD6) of Fast detector: row readout 4 fold row read out + DCD	ok	100ns !!
Low power consumption: (passive cooling)		ok
Pixel size (linear transistor)		acceptable
Single electron detection		ok
Dynamic range		no

MPG

Depfet Design for Belle II

12 International Workshop on DEPEET Detectors and Applications.

View on 4 pixel (60x60µm²)

Similar to Belle but larger Sources and different doping

Potential Distribution during Collection (empty Internal Gate)

+4.5

+3.5 +3 +2.5

+2

+1.5 +1 +0.5 -0.5 -1 -1.5 -2 -2.5 -3 -3.5 -4

-4.5 -5 -5.5

-3.4e-21

Modulation of potential by wedge

empty state

filled state 400k electrons

Simulated response curve

Saturation due to overflow in the Clear Regions

Real space detector sees a rather

homogeneous radiation level

(easier task)

What is crucial ? Surface damage of oxides

During irradiation - Charge handling capability

11.05.2015

How to deal with radiation damage?

- 1. Oxide charge compensation by gate voltage adaption works only for homogeneous radiation
- Annealing : Module should stands about 200°C significant annealing of surface damage possible (Master thesis: Martin Hensel)
- 3. Technology improvement

thinner oxides- studies ongoing

DEPFET fulfills many requirements on a direct electron detector

Especially the 'Belle design' provides

low material, high speed, low noise, low power, small pixel

Not intrinsically given:

Dynamic range increase should work

Radiation hardness: work ongoing