## Ultra fast electron detector – The Molecular Movie – Sascha Epp

npsd





mpsd

HLL ▷ Ladislaw Andricek ○ Martin Hensel ○ Christian Koffmane ○ Jelena Ninkovic ○ Gerhard Schaller ○ Martina Schnecke ○ Florian Schopper ○ Andreas Wassatsch ○ Christian Zirr

KIT ► Ivan Peric

USI 🕨 Klaus Gärtner

MPSD ► Ibrahym Dourki • Sascha Epp • R. J. Dwayne Miller • Fabian Westermeier



### *The "Molecular Dance"* Functionally important protein motions



What is the mechanism of correlated atomic displacements? Structure - Function Correlation P resolve atomic motions on timescales faster than the onset of diffusive motions.....observe force correlations

## Experiments Large scale



## **Electron diffraction** The wave-particle duality of particle beams



0.1 A corresponds to 100 keV X-rays

> We exploit the wave nature of the electron

> Need to detect electrons (sig.-to-noise)

direct-hit detector

#### -in-direct hit detector



#### Diffraction out to less than 0.2Å!







**Experiments** Small scale & with e-

- keV FED solid state
- keV FED liquid phase
- keV FED gas phase
- REGAE Diffraction
- keV time-resolved TEM
- REGAE Dynamic RTEM



## Detector requirements

| Experiment                                                               | Energy /<br>MeV | # Pixels        | Single-shot<br>Dynamic<br>range             | Frames per<br>second read<br>out |
|--------------------------------------------------------------------------|-----------------|-----------------|---------------------------------------------|----------------------------------|
| REGAE relativistic electron diffraction (static & time-resolved)         | 3 – 5           | 1k x 1k<br>(1M) | 10 <sup>3</sup><br>(up to 10 <sup>4</sup> ) | 100 Hz                           |
| REGAE relativistic TEM <sup>1</sup> mode                                 | 3 – 5           | 2k x 2k<br>(4M) | 100                                         | 100 Hz                           |
| time-resolved TEM <sup>1</sup><br>(adapted commercial TEM <sup>1</sup> ) | 0.1-0.3         | 1k x 1k<br>(1M) | 100                                         | ca. 1-10 MHz                     |
| keV UED <sup>2</sup> – solid state samples                               | 0.1 - 0.3       | 1k x 1k<br>(1M) | 10 <sup>3</sup><br>(up to 10 <sup>4</sup> ) | 1 kHz                            |
| keV UED <sup>2</sup> – liquid phase samples                              | 0.1-0.3         | 1k x 1k<br>(1M) | 100                                         | 1 kHz                            |
| keV UED <sup>2</sup> – gas phase samples                                 | 0.1 - 0.3       | 1k x 1k<br>(1M) | >3                                          | 1 kHz                            |

Table 1: Most demanding requirement to a detector system for the various types of experiments performed at MPSD. The most demanding requirements are indicated in red. (<sup>1</sup>transmission electron microscope <sup>2</sup>ultrafast electron diffraction)

#### Can one single system serve all requirements?

Principally yes, but we make two different (similar) systems!

Want fast detector...
as reasonably possible

mpsd

Excellent signal to noise (single primary e- detection)

## **Pixel detectors** Signal to Noise (SN)



#### For 50 µm (110):

A fraction of 1e(-6) single hit events creates less than 2700 e-h pairs 25% of 2700 is 675 e-h pairs With a noise of 100 e-h pairs this is 6 sigma from noise.

Less than a fraction of 1e-6 of events has a noise of 600.



e-h pairs

4 pixel.....25% each split

## Static & Dynamic Time scales



Max Planck Institute for Structure and Dynamics of Matter

MAADLANDKOUSILLSUHWE



# Further Evolution in atom gazing: ......Solution Phase Dynamics



## **TEM** nanocell with flow!



#### cross sectional view



Christina Müller: U Toronto Sercan Kescin, Stephanie Manz: MPSD





## Edet system (DH80k) DEPFET direct hit



#### direct electron detection

mpsd

- > 60 x 60 mm<sup>2</sup> active area
- > 1000 x 1000 px (4 chips)
- > pixel size: 60 x 60 µm<sup>2</sup>
- full frame readout 80kHzby 4-fold rolling shutter mode
  - dead joining region < 2 mm</p>



MAADEA NUKOUTSIILLISUULVII

## Data stream

Use BELLE-II components where possible: How well do they fit the application

> DH80k

Max Planck Institute for Structure and Dynamics of Matter



> 80 kHz -> 80 GB/s of data if operated continuously ! (compare DE-CIX with 230 GB/s)

mpsd

 Solution: burst mode with movie
of 100 frames.
-> storage needed

## Further main challenges

mpsd

## DCD resolution: Is 8 bit enough? Non linear DEPFET response (Rainer Richter) -> sufficient, more would be better.....

Radiation hardness: Suffer from radiation damage. What happens to the detector towards 10 MRad. Can we cure damage by annealing? To what extend? (Martin Hensel).

Thermal issues: due to low thermal conductivity (not solved, but doable)



## Radiation damage II – best case





2.5V shift after 3Mrad almost linear increase 0.35V/Mrad (needs confirmation)

## Edet system (DH80k) DEPFET direct hit



#### direct electron detection

mpsd

- > 60 x 60 mm<sup>2</sup> active area
- > 1000 x 1000 px (4 chips)
- > pixel size: 60 x 60 µm<sup>2</sup>
- full frame readout 80kHzby 4-fold rolling shutter mode
  - dead joining region < 2 mm</p>



Max Planck Institute for Structure and Dynamics of Matter

## Charge Handling





Low energy electron *b* large scattering angles

I.Dourki

Max Planck Institute for the Structure and Dynamics of Matter



#### Tayloring the response curves





#### **Response curve** Edet with internal gate overflow





## Edet system (DH80k) DEPFET direct hit



#### direct electron detection

mpsd

- > 60 x 60 mm<sup>2</sup> active area
- > 1000 x 1000 px (4 chips)
- > pixel size: 60 x 60 µm<sup>2</sup>
- full frame readout 80kHzby 4-fold rolling shutter mode
  - dead joining region < 2 mm</p>



Max Planck Institute for Structure and Dynamics of Matter



#### RESULT1: 11(50 µm Si)- Gap-2Walls1mmSi-1(300umSi)



\_\_\_\_\_29

psd

l.Dourki

## Effect of Be beamstop, walls and support layer on the signal



I.Dourki

#### Max Planck Institute for the Structure and Dynamics of Matter

## Effect of Be beamstop, walls and support layer on the signal



I.Dourki

#### Max Planck Institute for the Structure and Dynamics of Matter

## TEM movie





10 - 100 e- / pixel per single frame

➢ for frames with 10M e- total, this would be 250M frames or 2.5 M movies 10 - 100 e- / A<sup>2</sup> total area charge per
100 frame movie

## TEM movie



## TEM movie





> 300 keV

pitch black = 1000 A sample

> very white = 0 A sample

> 0..1000A in 256 steps

MANUCANDROTSHEESTIM

### **TEM movie** 100e-/px in white area



### **TEM movie** 100e-/px in white area



Works nicely!!!



AMPLANDOUTSHIDSOTUT

#### TEM movie 50e-/px in white area



bits read out

Works nicely!!!



## Some spatial investigations MTF (modulation transfer function)



Spatial resolution ► Point Spread Function, Line Spread Function, Modulation Transfer Function: all inter-connected by operations like Differentiation, Fourier Transform etc.

MAADLANDK OF STELSTEN



Max Planck Institute for Structure and Dynamics of Matter

S Fi



Max Planck Institute for Structure and Dynamics of Matter

S Fu

## Some spatial investigations MTF (modulation transfer function)



Spatial resolution ► Point Spread Function, Line Spread Function, Modulation Transfer Function: all inter-connected by operations like Differentiation, Fourier Transform etc.

TAX PLANTICUTS IT LEADED.



Max Planck Institute for Structure and Dynamics of Matter

ר Fi



S Fi





> around 10 wafers are in processing (for 50 $\mu$ m and 30  $\mu$ m thick det.)

Next important step ► ASICSs: DCD, Movie Chip

March 2016 ► DEPFET production start (DH1k) (Phase III)

March 2016 ► Completion of sensor production (DH80k) (Phase IV)

July 2017 ► Completion of DH80k detector system (Phase VI)

Dec. 2017 ► Completion of sensor production (DH1k) (Phase V)

2018 ► Completion of DH1k detector system (Phase VII)

npsd

# Thank you !!!

THE HHHH