Irradiation of the Optical Transmitters Test Results

Yunpeng Bai

Physik Department E18 - Technische Universität München

19th International Workshop on DEPFET Detectors and Applications 10-13 May, 2015. Kloster Seeon

supported by: Heinz Maier-Leibnitz Zentrum Cluster of Excellence: Origin and Structure of the Universe,

BMBF

Bundesministerium für Bildung und Forschung

FRM II Forschungs-Neutronenquelle Heinz Maier-Leibnitz

Hardware and Firmware for the Tests

Neutron Irradiation Test

Gamma Irradiation Test

Summary & Outlook

1. Glenair 050-301

850nm, 1.25Gbps 3.3V, 300mW Power consumption Size 24x8x8 (mm)

2. Avago AFBR-811FN1Z

12 channels, 850nm, 10Gbps per channel 3.3V, 2.5V; 100mW per channel Size 22x19x15 (mm)

1. Data Handling Card

- · AMC form factor with Xilinx Virtex 6
- · Installed on the 6U standard carrier card

2. Cables between DHC and DUT

- Data transmitted using the SFP passive copper cable to DUT
- · Data received via optical cable from DUT
- · I2C lines for the device control

3. Irradiation Environment

- Neutron at NECTAR in FRM II, TUM Garching: 2.3 · 10⁸ cm⁻² s⁻¹
- Gamma ray from Co⁶⁰ at Helmholtz Centre Munich,
 - I: 1.33 Gy min⁻¹
 - II: 9 Gy min⁻¹

1. Aurora Simplex Protocol

- 125Mhz reference clock
- 2 Gbps with 8b10b coding
- · Back channel with sideband signal

2. Error counter at the receiving side

- · Link down counter
- Soft error counter
 - 1) Corrupted data is not valid in 8b/10b table
 - 2) Corrupted data is in the table but has the disparity error
- Data error counter

Technische Universität Müncher

Hardware and Firmware for the Tests

Neutron Irradiation Test

Gamma Irradiation Test

Summary & Outlook

• Neutron fluence in Belle II from the simulation

Rate1 = $1.25 \cdot 10^{11}$ cm⁻² year⁻¹ So, the 10 years' dose is Dose = $12.5 \cdot 10^{11}$ cm⁻²

• Neutron rate at NECTAR in FRM II Rate2 = $2.3 \cdot 10^8 \text{ cm}^{-2} \text{ s}^{-1}$

So, the equivalent irradiation time of the 10 years' dose is

Exposure time = Dose/Rate2

= 5435 s

- Device is 40cm away from the neutron output
- The neutron source slot variable up to 30x20 cm

Technische Universität München

Results Avago AFBR 811FN1Z

• Irradiating results

Increasing the dose step by step

1. 13 seconds are the system time for neutron to reach the slot

•	Total dose	is equivale	ent to 20	years	
Y. Bai	Irradiation of the Optica	l Transmitters Test R	Results		

Step 7 is the 10 years' equivalent dose of neutrons

	Dose(neutron/cm ⁻²)	Time(s) + 13s ¹	Accumulated Dose	Errors
Step 1	$5\cdot 10^{10}$	217 + 13	$5 \cdot 10^{10}$	No
Step 2	$5\cdot 10^{10}$	217 + 13	$10 \cdot 10^{10}$	No
Step 3	$10 \cdot 10^{10}$	434 + 13	$20 \cdot 10^{10}$	No
Step 4	$10 \cdot 10^{10}$	434 + 13	$30 \cdot 10^{10}$	No
Step 5	$20 \cdot 10^{10}$	868 + 13	$50 \cdot 10^{10}$	No
Step 6	$75 \cdot 10^{10}$	3265 + 13	$125 \cdot 10^{10}$	No
Step 7	$125 \cdot 10^{10}$	5435 + 13	$250 \cdot 10^{10}$	No

• The neutron source slot

Connections

· Irradiating results

Increasing the dose step by step

	Dose(neutron/cm ⁻²)	Time(s) + 13s ¹	Accumulated Dose	Errors
Step 1	$62.5 \cdot 10^{10}$	2718 + 13	$62.5 \cdot 10^{10}$	No
Step 2	$62.5 \cdot 10^{10}$	2718 + 13	$125 \cdot 10^{10}$	No
Step 3	$125 \cdot 10^{10}$	5435 + 13	$250 \cdot 10^{10}$	No

Total dose is equivalent to 20 years'

Hardware and Firmware for the Tests

Neutron Irradiation Test

Gamma Irradiation Test

Summary & Outlook

Setup at Helmholtz Centre Munich

Gammacell 220 I / II

- Nuclide: Cobalt-60
- Closed unit irradiation chamber
- Size: height 20,6cm; ø 15,2 cm
- Homogeneous value in the centre 4x5 cm

Setup

- Align the test device in the centre of the chamber
- All the cables are guided outside through the hollow cylinder

Gammacell I strength

In April: 1,33 Gy min⁻¹

DL (Be	- Werte an d	er Gammacell Co ⁶⁰ ; $T_{1/2} = 5.27$ a Ausgleichsfilters gelte	I im Jahr 2015 n die <i>halben</i> Werte)	-
Bestrahlungs- geometrie	sehr kleine H2O - Menge Gy min-1	kl. H2O - Menge im Temp. Becher Gy min-1	ca. 100 ml H2O im Tem. Becher Gy min ⁻¹	0.5 - 1.0 H2O Gy min-1
Januar	1.37	1.30	1,24	1,17
Februar	1.36	1.28	1,22	1,16
März	1.35	1,27	1,21	1,14
April	1.33	1,26	1,20	1,13
Mai	1,32	1,24	1,18	1,12
Juni	1,30	1,23	1,17	1,11
Juli	1,29	1,22	1,16	1,09
August	1,27	1,20	1,15	1,08
September	1,26	1,19	1,13	1,07
Oktober	1,25	1,18	1,12	1,06
November	1,23	1,16	1,11	1,05
Dezember	1.22	1.15	1,10	1.04

🛞 Gammacell I, Avago AFBR 811FN1Z

- Belle II 20 years' equivalent dose
 Dose = 200 krad
- Gammacell I rate Rate = 1,33 Gy/min = 133 Rad/min
- ⇒ So, the equivalent irradiation time is Exposure time = Dose/Rate = 1534 min

- 1. At beginning in Gammacell I
- Two channels are working
- 3.3V has 138mA current
- 2.5V has 176mA current
- I2C working
- 2. Power Cycle after step2 completed
- Two channels are not working
- 3.3V has 114mA current
- 2.5V has 47mA current
- I2C gets wrong value

	Dose(krad)	Time(min)	Accumulated Dose(krad)	Status
Step 1	9.3	70	9.3	v
Step 2	125.6	944	134.9	
	67.3	506	76.6	No Data Err, but both link are down, I2C gets wrong value

Setup is the same as that in Gammacell I

- A new Avago AFBR-811FN1Z into it
- Gammacell II rate in April:

Rate = 9 Gy min⁻¹

So, the equivalent

irradiation time is

HelmholtzZentrum münch Deutsches Forschungszentrum für Gesun	ien Idheit und Umwelt			
I (Be	DL - Werte a	an der <i>Gammac</i> Co^{60} ; $T_{1/2} = 5$	ell II im Jahr 2 .27 a	2015
Bestrahlungs-	. Ter wendung (ues Ausgleichsfilte	rs gelten die <i>halbei</i>	<i>i</i> Werte)
geometrie	sehr kleine H2O - Menge Gy min-1	kl. H2O - Menge im Temp. Becher Gy min-1	ca. 100 ml H ₂ O im Tem. Becher Gy min-1	0.5 - 1.0 J H2O Gy min-1
Monat				
Januar	9,30	8,78	8,37	7.90
Februar	9,19	8,68	8.27	7 82
März	9,10	8,59	8.19	7 74
April	9,00	8.50	8.10	7.65
Mai	8,90	8,41	8.01	7.57
Juni	8,81	8,31	7.92	7.48
Juli	8,71	8,22	7.84	7 40
August	8,61	8,13	7.75	7.32
September	8,52	8.04	7.67	7.24
Oktober	8.43	7.96	7.58	7 16
November	8.33	7.87	7.50	7.08
Dezember	0.24	7 79	7.40	7,00

Results Avago 811FN1Z in Gammacell II

1. At beginning in Gammacell II

- Two channels are working
- 3.3V has 129mA current
- 2.5V has 172mA current
- I2C works well

2. Before Power Cycle

- · Two channels do not work anymore
- 3.3V has 145mA current
- 2.5V has 175mA current
- I2C gets wrong value

3. After Power Cycle

Two channels still do not work

Technische Universität Münche

- 3.3V has 110mA current
- 2.5V has 51mA current
- · I2C gets wrong value

Setup

- The test device in the centre of the **Gammacell II** chamber
- All the cables are guided outside through the hollow cylinder

Gammacell II centre strength

• In April: 9 Gy min-1

Technische Universität Müncher

Experiment in Gammacell II

	Dose(krad)	Time(min)	Accumulated Dose(krad)	Status
Step 1	168.3	187	168.3	 Image: A set of the set of the

- Two devices, one Tx, one Rx
- 3.3V has 153mA current at the beginning
- 3.3V has 155mA current in the end
- After power cycle 7, there is one single event upset in the transmitting channel

Power Cycle Steps

	Time	State
1	11:40	ОК
2	11:55	ОК
3	12:10	ОК
4	12:25	ОК
5	12:40 OK	
6	12:55 OK	
7	13:25	ОК
8	13:55 OK	
9	14:25	ОК
10	14:45 OK	

Hardware and Firmware for the Tests

Neutron Irradiation Test

Gamma Irradiation Test

Summary & Outlook

1. Device under neutron irradiation within the Belle II requirement

- Avago AFBR-811FN1Z: no error, working stably
- Glenair 050-301: no error , working stably

- 2. Device under Gamma irradiation within the Belle II requirement
 - Avago AFBR-811FN1Z: stop working after the dose reach:

Technische Universität Münch

- 76.6krad(I) ≈ 7.5 years
- 91.1krad(II) \approx 9 years
- Glenair 050-301:

Only 1 SEU during the whole period

Total dose 168.1krad

3. Reason for the damages of the Avago device under

Gamma irradiation

- Corruption of the configuration memory
- We are contacting the company to check if we could program the device memory

Outlook

- Avago AFBR-811FN1Z has a problem during the Gamma irradiation
 - \rightarrow ASAP we get feedback from Avago, futher study on this device
- Glenair 050-301 has good performance during both tests
 - \rightarrow Increasing the dose upto Megarad

Thank You for Your Attention!

DUT is 40cm away from the neutron output slot

Hardware & Firmware for the Tests Neutron Irradiation Test Photon Irradiation Test Summary

Data handling card is in the second chamber behind the concrete wall

