Status of ONSEN

Dennis Getzkow, Thomas Geßler, Wolfgang Kühn, <u>Sören Lange</u>, Leonard Koch, Klemens Lautenbach, Zhen-An Liu, David Münchow, Björn Spruck, Jingzhou Zhao Bundesministerium für Bildung und Forschung

IHEP Beijing, Univ. Giessen, Mainz Univ.

19th International Workshop on DEPFET Detectors and Applications Seeon, 12.05.2015

OUTLINE

1. Status of xFP/AMC board

hardware testing procedure (preparation of QA for mass production)

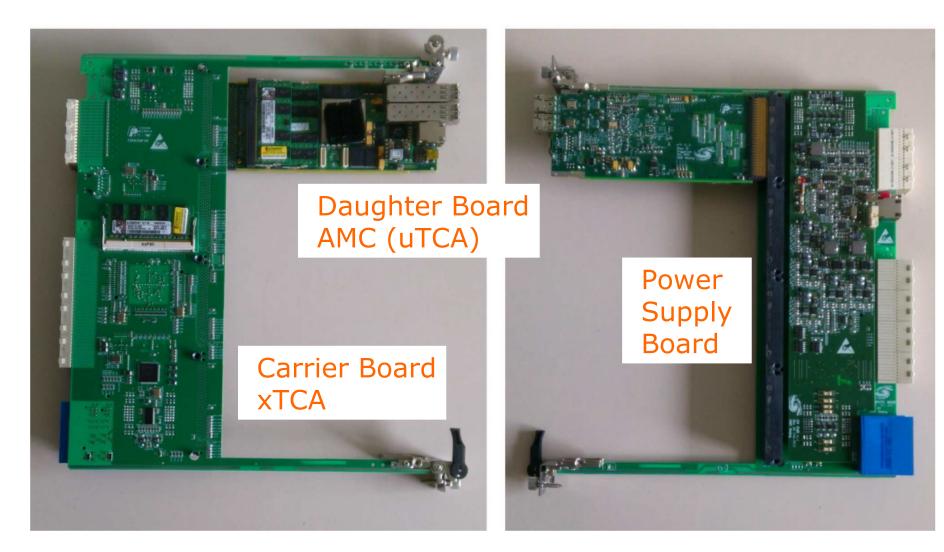
2. Status of xTCA carrier board

(see also talk by Jingzhou Zhao)

4. discussion:

test at KEK in October?

5. discussion:


firmware development for next DESY test

6. discussion:

event builder interface

(preparation for discussion at B2GM)

Reminder: Compute Node → xTCA carrier board and xFP/AMC board AMC is uTCA formfactor (but partially different pin assignment) Reminder: only xFP/AMC used at DESY tests

Status of xFP/AMC board

- v4.0 was brought by Jingzhou Zhao from IHEP to Giessen in 01/2015
- now two <u>different</u> designs/layouts
 - ONSEN board

larger FPGA (FX70T)

- 2×6.5 Gbps optical links
- \rightarrow 1 board remained in Giessen
- \rightarrow tested
- \rightarrow GREEN LIGHT
- DATCON board

smaller FPGA (LX50T, same as Belle2Link)

 4×3.25 Gbps optical links

ightarrow 1 board shipped to Bonn

- \rightarrow GREEN LIGHT (as of today, see talk by Bruno Deschamps)
- FPGAs are pin-compatible

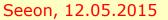
Hardware testing procedures @ Giessen (also for QA of Mass Production)

- 1. dedicated FPGA cores
- 2. x-ray check
- 3. thermal check

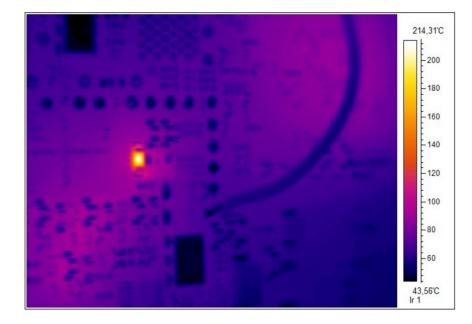
Example for tests with dedicated FPGA cores Test of 8 AMC cards v3.2 at Giessen

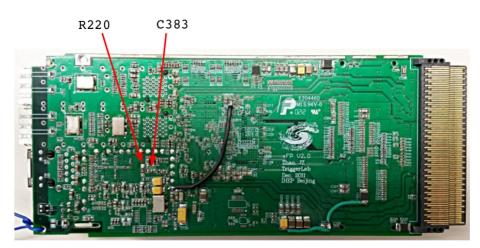
by Björn Spruck, Thomas Geßler, Milan Wagner, David Münchow, Dennis Getzkow

	1	2	3	4	5	6	7	8
Seriell	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\sim	\sim
RAM1	\checkmark	Х	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
RAM2	\checkmark	Х	\checkmark	\checkmark	\checkmark	\checkmark	\sim	\sim
PPC	\checkmark							
FLASH	\checkmark	\checkmark	\checkmark	Х	Х	\checkmark	\sim	\checkmark
PROM	\checkmark							
OPT 1 (3.125 Gb/s)	-	-	-	-	-	-	\sim	\sim
OPT 2 (3.125 Gb/s)	\checkmark							
OPT 3 (3.125 Gb/s)	-	-	-	-	-	-	\sim	\checkmark
OPT 4 (3.125 Gb/s)	\checkmark							
Ethernet	\sim	\checkmark	\sim	\sim	\sim	\checkmark	\checkmark	\checkmark
Backplane (3.125Gb/s)	\checkmark							
Linux (on PPC)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\sim	\sim	\checkmark


x-ray check: example AMC/xFP v3.1

resistors in front of FLASH




DDR2 connector

Status of ONSEN

Thermal check, example: xFP/AMC v3.3, v2 boards affected, but not v3.1 boards Capacitor C383 wrong by 10³ (uF instead of nF)

List of xFP/AMC issues found during hardware tests @ Giessen \rightarrow all of them fixed for v4.0

xFP/AMC card hardware testing			
pin 7 and 9 of SFP+ left open	v3.1 (all)		
ightarrow limited bandwidth to 4.25 Gbps			
diode, wrong polarity	v3.1 (some)		
diode missing	v3.3 (1x)		
resistors at FLASH, soldering short circuit	v3.2 (1x)		
(confirmed by x-ray)			
RAM connections, soldering short circuit	v3.2 (2x)		
(confirmed by x-ray)			
Capacitor C383 wrong by factor 10^3 (uF instead of nF)	v3.3 (all), v2 (all)		
(found by thermal camera)	v3.1 not tested		
ADC out of range			
ightarrow fixed by adding voltage dividers for 12, 5, 3.3, 2.5 V to ADC	v3.3 (all)		
Voltage drop (\geq 80 mV on V=+1 V line) for large bitstreams	v3.3 (all)		

AMC cards in pocket.-ONSEN at KEK are v3.3 w/ V=+1V power supply problem \rightarrow can they be used ? yes, with hotfix.

before hotfix: measured voltage on +1V directly below FPGA (C235): 917 mV (confirmed by JTAG measurement)

hotfix: thick cable between one of the 1V pins of PSU and C271 (or C248)

after hotfix: V_{int} rising from ~923 to ~976 mV (on same board with same bitstream) confirmed with one additional board

Status of xTCA carrier board

- v3.2 was brought by Jingzhou Zhao from IHEP to Giessen in 01/2015
- some issues detected
 - \rightarrow requires new iteration

(see details talk by Jingzhou Zhao)

xTCA carrier board, changes for new v3.3 (expected end of may 2015)				
serial pins to AMC cards				
 used I/O pins with wrong bank voltage 				
- used I/O pins w/o LVDS drivers				
ightarrow fixed by assignment to different pins				
fan-out clock (necessary for the serial links)				
\rightarrow fixed by reassignment and use of LVPECL termination				
wrong capacitor values on DDR2 power supply filter				
(factor 10 3 , caused problematic signal) $ ightarrow$ fixed				
only 8 of 16 backplane links working at same time				
(MGT power supply problem $ ightarrow$ fixed)				
automatic programming chain of 4 AMC cards on 1 carrier board				
(wrong power supplied to the bypass chips $ ightarrow$ fixed)				
missing PCB trace added, to enable IPMI bitstream loading				
inverted LVDS signals \rightarrow fixed				
new: changes to rear side of xTCA board				
USB, JTAG, RJ45, and added design for a rear transistion module				

by Jingzhou Zhao and Thomas Geßler

Summary & Conclusion

- presently only 2 xFP/AMC boards of v4.0 (the final one, but boards have now different layout!)
 - for Giessen xFP/AMC design, green light is given
 - for Bonn xFP/AMC design, green light is given
 - \rightarrow next step: mass production
- using existing boards of older versions?
 - \rightarrow limited solution
 - requires hotfixes
 - reminder: v3 and v4 are not firmware-compatible (different bitstreams)
- temporary use of Panda boards?
 - \rightarrow limited solution
 - ightarrow requires soldering of clock (160 MHz vs. 157.25 MHz)

Material for discussion

Discussion:

Test at KEK in autumn? (maybe October, before B2GM)

Proposed plan by Itoh-san (by Email, May 11, 2015):

- 1) Add "Pocket DHH" to KEK test bench
- 2) Resume test bench with

Pocket DHH +Pocket Onsen + Pocket DAQ + mini-HLT, connected to the common FTSW trigger

- 3) Debug the event building scheme at EVB2 and establish the automatic recovery at run-stop and start, which we could not make it during last DESY beam test.
- 4) High-rate test (30 kHz) will follow
 by applying the dummy trigger from FTSW (note: requested by BPAC)
- 5) Then we will port the debugged system to DESY site, and prepare for the 2nd DESY test.

Who can go to KEK for 1-2 weeks? (and: EPICS support included?)

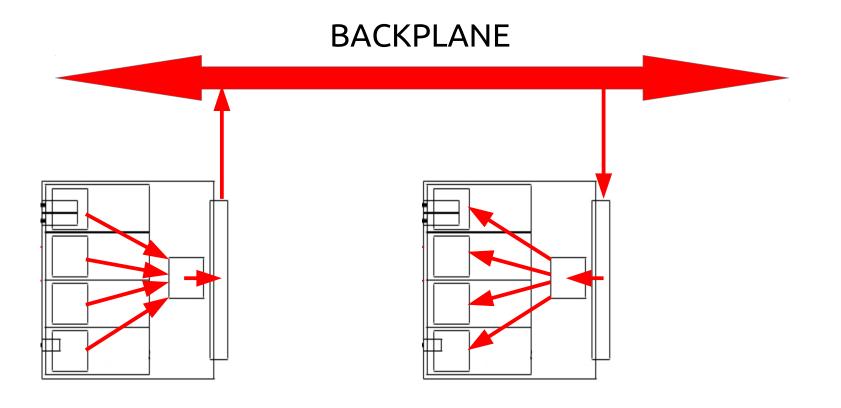
Discussion: firmware development for next DESY test beam? 2 large workpackages

- do we need <u>cluster data format</u> ? issues:
 - decoding/unpacking inside ROI-filter
 - basf2 unpacker
 - will cluster rescue be switched on? (will Steffen Behr from KIT be there?)
- do we need <u>full frame support</u> (e.g. pedestal monitoring)? (or part of full frames) issues:
 - interleaving with normal events
 - "chained mode" in buffer management
 - ROI-filter bypassing
 - basf2 unpacker
 - how does EVB handle them?

Preparation of Discussion for B2GM (proposed by Itoh-san): Interface from PXD to Event Builder (EVB2)

- default concept (the "easy way")
 - 32 x RJ45, copper cable, TCP
 - FPGA firmware: *siTCP* from BeeBeans Tech. already used in DESY test, no problem observed
 - accepted and confirmed by Yamagata-san (his only worry: buffer of switches with optical inputs)

• issue:


RJ45 connectors on xFP/AMC card are used for slow control (PPC) solution: use SFP+ converters SFP+ \rightarrow RJ45 <u>all of them are purchased</u>

- implication event building on ATCA not required
- why do we need the carrier board ?
 - ROI distribution
 - reason: broadcast of ROIs on GB ethernet backplace at the limit ${\sim}100~\text{MB/s}$
 - solution: matching, send the correct ROI to correct FPGA master thesis of Dennis Getzkow, presented in Prague

related to EVB2 discussion at B2GM: xTCA Carrier Board for Event Building?

- main issue of ONSEN: FPGA is too small (memory controller requires significant FPGA resources)
 → TCP or UDP needs another AMC card ("outsender module") (so, not 32, but 64 cards required)
 → DDR2 RAM is 2 x 2 GB but only 2 GB are used so far (reduces possible HLT latency to 2.5 s)
- possible solution? send data out to a "ONSEN concentrator" by Aurora link-layer protocol (requires less resources)
- significant firmware development required: multi-step data transfer (see next slide)
 - \rightarrow 4 , outsender" AMC cards

here: no ROI core, less resources required in this case: carrier board is needed for partial event building problem: reduced BMBF funding (-25%) in next 3 years

x8

COLLECTORs

THANK YOU.