

FANGS for BEAST

J. Dingfelder, A. Eyring, <u>Laura Mari</u>, C. Marinas, D. Pohl

University of Bonn

mari@physik.uni-bonn.de

FANGS: <u>FE-I4 ATLAS Near Gamma Sensors</u>

- FE-I4 read out chip

 High hit rates and radiation hard
 IBM 130 nm CMOS process
 Provides read out for 80x336 pixels
 Thickness=150 µm
 Physical size=21x19 mm²
 Bump bonded to Si sensor
 - Sensor: n-in-n planar Pitch=**50x250 µm²** Thickness=200 µm Physical size=19x20 mm² HV=60 V Power=1.2 W
- Background radiation measurements in Phase 2:
 - Sensitive to low keV X-rays (6 keV to 60 keV)
 - Particle rates (25 ns)

۲

TDC Method

- Two stage amplifier \rightarrow Discriminator with adjustable threshold.
- Time over threshold **(TOT)** with externally supplied 40 MHz clock.
- Time to digital converter **(TDC)** uses 640 MHz FPGA clock.
- Output of each pixel is ORed.
- Internal charge injection circuit for threshold tuning and calibration

 \rightarrow Both, high speed and adequate energy resolution achieved at the same time

mari@physik.uni-bonn.de

Experimental Setup

- USBpix used for readout and pyBAR for analysis.
- Open drain buffer amplifies HitOr signal on long cables (O(30 m)).
- New USBPix3 readout system being tested at the moment (8 FE at a time).
- Software allows to monitor multiple FE in parallel.

Pixel-per-pixel Calibration

- Threshold tuning noise based
- Vth and TDC as a function of charge different for each pixel.
- Per pixel calibration needed.
- Internal charge injection in units of PlsrDAC ~ 55 electrons

mari@physik.uni-bonn.de

Calibration and Dynamic Range

70

Energy Resolution

mari@physik.uni-bonn.de

Initial Design Concept for Beast II

- Stave structure similar to ATLAS IBL.
- 90 μm thick flex attached on top of sensor for read out.

→ BUT: High absorption probability in the low keV range \rightarrow Forced a design change

universität**bonn**

• How to mount few single chips in Phase 2? (Reusing existing infrastructure) Connector Support+Cooling FE-14 Sensor Flex Wire bonds

• Move the flex to one side. No material in front!

• Thinner support. Make use of PXD cooling

Mechanical Arrangement

FANGS and CLAWS Integration

BASF2 implementation M. Ritter (KEK-MPI)

Flex Concept

- Design still evolving:
- 8 mm wide Kapton
- 2 x 40 pin connector on backward side
- Short intermediate Kapton connecting to a PCB attached to SVD ring
- 4 Ethernet and 1 power connectors on PCB

Aluminum Stave Material Budget

- Low and flat material budget distribution
- No impact in outer detectors

Reminder: PXD+SVD contribute with ~4.0% X_0

• Flex (or 500 μ m PCB) 66 μ m thick polymide $\rightarrow 0.023\%X_0$ 24 μ m Cu (2 layers) $\rightarrow 0.17\%X_0$

mari@physik.uni-bonn.de

FEA of a FANGS (Al-based) Stave

- Maximum temperature = -4 °C
- Maximum ΔT within one sensor = 4 °C
- Power = 1.2 W each FE
- Cooling block = -15 °C
- Environment = 20 °C at 2 m/s

- Proper heat handling
- Low and flat temperature profile

mari@physik.uni-bonn.de

- FANGS is rapidly evolving into a final detector system for background (energy and rates) measurements at BEAST Phase 2
- All the aspects related to the design, characterization, integration are in good progress
- 30 hybrids (FE-I4 and planar sensor) have been prepared (twice what is needed)
- Front end has been tuned to cover the expected energy range with proper resolution
- Multiple-FE DAQ with long cables is being tested with a new readout system
- Kapton flex and intermediate boards are being designed
- Mechanical concept and cooling management are well in progress

mari@physik.uni-bonn.de

Thank you

