Suche nach natürlicher Supersymmetrie in Multilepton-Endzuständen mit dem ATLAS-Detektor

Johannes Mellenthin, betreut durch Michael Flowerdew

Max-Planck-Institut für Physik, München

DPG Frühjahrstagung, Wuppertal 2015

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Johannes Mellenthin (Max Planck Institut)

SUSY Multilepton-Endzustände

09.03.2015 1 / 13

Einführung - p(hänomenologisches)MSSM

p(hänomenologisches)MSSM

- Anzahl freie Parameter (105) für das MSSM \rightarrow zu groß für allgemeine Studien
- Reduzierung der Parameter mittels experimentell motivierten Prinzipien
 - Keine neue Quelle der CP-Verletzung
 - Veine Flavor-ändernde neutrale Ströme
 - Degenerierte Sfermion Massen der 1. und 2. Generation
 - Vernachlässigbare Yukawa Kopplungen und trilineare Kopplungen (A-Terme) für die ersten beiden Generationen
- \rightarrow 19/20 Parameter für das pMSSM:

$m_{\tilde{q}_L}$	m _{ũ_R}	m _{õa}		SUSY particles
$m_{\tilde{l}_L}$	m _{ẽ_R}		Sfermion Massen der	$\tilde{u} \tilde{c} \tilde{f} \tilde{\varphi} \tilde{\chi}^0$
$m_{\tilde{Q}_{L}}$	$m_{\tilde{t}_R}$	$m_{\tilde{b}_B}$	Squarks und Sleptonen	
$m_{\tilde{L}_{l}}$	$m_{ ilde{ au}_R}$			d s b Y H
M_1	M ₂	M_3	Gaugino Massen	$\tilde{v}_e \ \tilde{v}_\mu \ \tilde{v}_\tau \ \tilde{Z}$
$tan\beta$	M_A	μ	Higgs Sektor	
A_t	A_b	$oldsymbol{A}_{ au}$	trilineare Kopplungen	
(<i>m</i> _{3/2})			Gravitino Masse	Squarks Susy force particles Sleptons Higgsino
				Chargino and neutralino mixing

= nan

- Matthew Cahill-Rowley, JoAnne L. Hewett, Ahmed Ismail, Thomas G. Rizzo (arXiv:1407.4130 [hep-ph]): Untersuchung von ATLAS und CMS Suchmethoden in drei zufälligen Scans des pMSSM Parameterraumes
- Zufällige Parameterwahl (< 4 TeV) → mehrere Millionen Modelle (SOFTSUSY)
- Reduzierung der Anzahl der Modelle anhand folgender Einschränkungen:
 - Beschleuniger (pre-LHC)
 - Flavor (Meson-Antimeson Mischung, ...)
 - Präzissionsmessungen (g 2, ...)
 - Dunkler Materie (LSP Streuquerschnitt vereinbar mit direkter Suche, ...)
 - theoretische Einschränkungen (tachyonenfrei, ...)
- → Etwa jeweils 225 000 Modelle mit einem Neutralino oder einem Gravitino als LSP erfüllen dies
- Zusätzlich dritter Satz von Modellen mit einem Neutralino LSP und zusätzlichen Einschränkungen
 - Vorhersage der Higgs Masse von $126 \pm 3 \, \text{GeV}$
 - LSP stimmt mit WMAP relic density überein
 - weniger als 1 % Finabstimmung (low-FT)
- → Etwa 10 000 Modelle erfüllen dies

= 200

• Ausschluss der Modelle:

Sucha	LSP	LSP	
Suche	Neutraino	Gravilino	LOW-FI
2 – 6 Jets	26,7%	21,6%	44,9%
Multijets	3,3%	3,8%	20,9 %
1-Lepton	3,3%	6,0%	20,9%
SS Dileptons	4,9%	12,4 %	35,5%
Mittleres Stop (2/)	0,6%	8,1 %	4,9%
Mittleres/Schweres Stop (1/)	3,8%	4,5%	21,0%
Direktes Sbottom (2b)	6,2%	5,1 %	12,1 %
3. Generation Squarks (3b)	10,8 %	9,9%	40,8 %
3. Generation Squarks (3/)	1,9%	9,2%	26,5 %
3 Leptonen	1,4 %	8,8%	32,3 %
4 Leptonen	3,0 %	13,2%	46.9%
$Z + \text{Jets} + E_{\text{T}}^{\text{miss}}$	0,3%	1,4%	6,8%

arXiv:1407.4130 [hep-ph]

→ Überraschend hoher Ausschluss durch 4 Leptonenanalyse (ATLAS-CONF-2012-153)

Johannes Mellenthin (Max Planck Institut)

- E E

- ATLAS Kollaboration (arXiv:1405.5086 [hep-ex]): Suche nach Supersymmetrie bei Ereignissen mit vier oder mehr Leptonen
- Erläuterung der verschiedenen Signalregionen:

- Untergrundausschluss durch Forderung von E^{miss} (alle Signalregionen) oder m_{eff} ("b"-Regionen)
- Z-Veto oder Forderung (sämtliche SFOS Kombinationen)

 $\tilde{\chi}^0_3$

Z

Ziel der Studie

- Verstehen des hohen Ausschlussgrades der 4 Leptonenanalyse
- Simulation von 10177 pMSSM Modellen mit Herwig++
- Untersuchung der Modelle mit
 - Kinematischen Schnitten auf die erzeugten Leptonen und Jets
 - Ohne Detektorsimulation
 - Zusätzlich mit einer abgeschätzten Rekonstruktionseffizienz
 - NLO+NLL Wirkungsquerschnitt f
 ür "stark" erzeugte Ereignisse
 - LO Wirkungsquerschnitt f
 ür "schwach" erzeugte Ereignisse

$$\rightarrow N = \sigma \cdot L \cdot A \cdot \epsilon$$

-

Fehlidentifikation und anderen Detektor-Level Effekten

Fehlidentifikation und anderen Detektor-Level Effekten

Mit prozessspezifischem Wirkungsquerschnitt $\Rightarrow N = L \sum_{\text{proc}} \sigma_{\text{proc}} A_{\text{proc}} \epsilon_{\text{proc}}$

Totaler Wirkungsquerschnitt

 $\sigma_{\rm tot} = \sum_{\rm proc} \sigma_{\rm proc}$

- $\sigma_{\rm tot} < 1 \, {\rm pb}$ für die meisten Modelle
- Wenige besitzen hohen Wirkungsquerschnitt bis zu 45 pb
- Auswirkung der Vernachlässigung des NLO Anteiles elektroschwacher Prozesse?
- ightarrow Untersuchung des Verhältnisses $\sigma_{
 m strong}/\sigma_{
 m tot}$

Anteil der Prozesse mit starker Wechselwirkung

- Großteil der Modelle nahe bei Null (50 % unterhalb 0,1)
- Nur 6 % der Modelle haben überwiegend starke Prozesse $(\sigma_{\text{strong}}/\sigma_{\text{tot}} > 0, 9)$
- → Nur wichtig falls diese Prozesse Ereignisse mit vier geladenen Leptonen erzeugen

Anteil der Prozesse mit starker Wechselwirkung

- Großteil der Modelle nahe bei Null (50 % unterhalb 0,1)
- Nur 6 % der Modelle haben überwiegend starke Prozesse $(\sigma_{\text{strong}}/\sigma_{\text{tot}} > 0,9)$
- → Nur wichtig falls diese Prozesse Ereignisse mit vier geladenen Leptonen erzeugen

- Großteil der Modelle nahe bei Eins (44 % oberhalb 0,9)
- Nur 2 % der Modelle haben überwiegend elektroschwache Prozesse ($\sigma_{\text{strong}}/\sigma_{\text{tot}} < 0, 1$)
- → 4 Lepton Ereignisse meißtens durch Squark und Gluino Zerfälle erzeugt

- Großteil der Modelle hat nur wenige Signalereignisse bei 20,3 fb⁻¹
- Mittelwert bei 53 Signalereignissen
- Aber: Signalregion Selektionskriterien noch nicht angewandt

- Großteil der Modelle hat nur wenige Signalereignisse bei 20,3 fb⁻¹
- Mittelwert bei 53 Signalereignissen
- Aber: Signalregion Selektionskriterien noch nicht angewandt

- Deutliche Reduzierung der Signalereignisse bei 20,3 fb⁻¹
- Mittelwert bei 14 Signalereignissen
- ightarrow Dennoch gute Aussichten viele Modelle auszuschließen ($N_{
 m BSM}^{
 m obs} \lesssim 4-9$ Ereignisse)

- 3664 von 10177 Modellen lassen sich ausschließen (36 %)
- Ausschluss nach Signalregion:

Signalregion	Ausgeschl. Modelle
SR0noZa/b	2832 ± 24
SR1noZa/b	2936 ± 25
SR2noZa/b	1146 ± 11
SR0Z	1538 ± 15
SR1Z	462 ± 5
SR2Z	172 ± 2

ATLAS Simulation Work in Progress

- Die meisten Modelle werden durch mehrere Signalregionen (inklusive Regionen mit Taus) ausgeschlossen
- Signalregionen mit Z Veto zeigen höheren Ausschluss also welche die ein Z Boson fordern; nur wenige Modelle haben reale Z Bosonen in ihrem Endzustand

Ausschluss der Modelle mit abgeschätzter Rekonstruktionseffizienz

- Um die Rekonstruktionseffizienz des ATLAS Detektors zu berücksichtigen wird folgende Annahme gemacht:
 - Für "SR0"-Regionen: $\epsilon = 0, 7$
 - Für "SR1"-Regionen: $\epsilon = 0, 2$
 - Für "SR2"-Regionen: $\epsilon = 0, 1$
- Verringerung der Anzahl ausgeschlossener Modelle auf 2609 (26 %)
- Ausschluss nach Signalregion:

Signalregion	Ausgeschl. Modelle	Ausgeschl. Modelle mit ϵ
SR0noZa/b	2832 ± 24	2347 ± 21
SR1noZa/b	2936 ± 25	1212 ± 12
SR2noZa/b	1146 ± 11	94 ± 1
SR0Z	1538 ± 15	1071 ± 11
SR1Z	$\textbf{462} \pm \textbf{5}$	89 ± 1
SR2Z	172 ± 2	4 ± 1

ATLAS Simulation Work in Progress

- Ausschlussrate verringert sich drastisch für Signalregionen die Taus vordern
- $\rightarrow~98\,\%$ aller ausgeschlossenen Modelle werden durch "SR0"-Regionen ausgeschlossen

- Die Sensitivität der ATLAS SUSY-Suche in Endzuständen mit 4 Leptonen für Modelle mit geringer Feinabstimmung im pMSSM wurde untersucht
- Ereignisse mit 4 Leptonen treten hauptsächlich durch Squark und Gluino Produktion auf (starke Wechselwirkung)
- Mit realistischer Rekonstruktionseffizienz: Großteil der Sensitivität kommt von Ereignissen wo nur Elektronen und Myonen gefordert werden
- Ausschlussrate geringer als in ursprünglicher Veröffentlichung (47 %), dennoch relativ hoch (26 %)
- → Multilepton Suche die zusätzlich Jets fordert kann ein mächtiges Werkzeug zur Überprüfen von Iow-FT SUSY Szenarios sein

Danke für die Aufmerksamkeit!

Supersymmetrie als Erweiterung des Standardmodells

(Eine) Motivation: Das Hierarchieproblem

- Großer Unterschied zwischen der stärke der schwachen Kraft und der Gravitation im Standardmodell nicht erklärbar
- Higgsmasse $m_H = 125 \,\text{GeV}$ sollte durch Loop-Korrekturen nahe der Planckmasse von $10^{19} \,\text{GeV}$ liegen

Mögliche Lösung: Supersymmetrie (SUSY)

- Finde Symmetrie die die Loop-Korrekturen automatisch behebt
- Korrekturen von Fermionen und Bosonen haben unterschiedliches Vorzeichen
- Idee: Jedem Fermion (Boson) wird ein supersymmetrisches Boson (Fermion) zugeordnet

Johannes Mellenthin (Max Planck Institut)

- Trotz ausgiebiger Suche wurde bisher kein supersymmetrisches Teilchen gefunden
- → Supersymmetrie muss eine gebrochene Symmetrie sein
- Minimales supersymmetrisches Standardmodell (MSSM): Erweitereung des Standardmodells das Supersymmetrie realisiert mit geringster Anzahl an zusätzlichen Feldern (*R*-Paritätserhaltung) → 105 neue Parameter
- Anzahl freier Parameter zu groß für allgemeine Studien
- Häufiges Vorgehen: Verwendung eines speziellen SUSY Modelles um Parameter mittels einem bestimmten Brechungsmechanismus zu reduzieren
- Aber Mechanismus kann ein anderer sein
- $\rightarrow\,$ Sinnvoll: Betrachtung einer Theorie die keine Annahme über den Ursprung der Symmetriebrechung macht

= nar

米国ト 米国ト 座

Der ATLAS-Detektor

- Teilchendetektor am LHC am CERN
- Höchste Schwerpunktsenergie für Proton-Proton Kollisionen $\sqrt{s} = 8 \text{ TeV}$
- Ab Juni Erhöhung auf $\sqrt{s} = 13 \,\text{TeV}$
- Hohe instantane Luminosität von $\mathcal{L}_{max} = 7,7 \cdot 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$
- Drei Hauptkomponenten
 - Innerer Detektor
 - Kalorimetersystem
 - Muonspektrometer

= ~ Q (~

Der ATLAS-Detektor

- Innerer Detektor: Tracking & Impulsmessung mittels eines solenoidalen B-Feldes
- Kalorimeter (elektromagnetisch und hadronisch): Energiedeponierung
- Muonspektrometer: Tracking & Impulsmessung mittels eines toroidalen B-Feldes
- Jets: Hadronen treten i. A. nicht isoliert auf \rightarrow gemeinsame Flugrichtung

Akzeptanz – Rekonstruktionseffizienz

- Akzeptanz: Beinhaltet sämtliche mögliche Schnitte $(p_T, E_T^{miss}, m_{eff}, ...)$
- \rightarrow Akzeptanz: einfach zu simulieren
- Rekonstruktionseffizienz: rel. homgen über den gesamten Bereich verteilt
- → Rekonstruktionseffizienz: aufwändig zu simulieren

- $\sigma_{\text{strong}}/\sigma_{\text{tot}} = 0,07$ für alle Ereignisse
- $\sigma_{\text{strong}}/\sigma_{\text{tot}} = 1$ für alle Ereignisse mit 4 oder mehr geladenen Leptonen
- \rightarrow Starke Verschiebung des Verhältnisses $\sigma_{\text{strong}}/\sigma_{\text{tot}}$

Untersuchung eines charakteristischen Models

	<i>m</i> [GeV]	Zerfallsprod.	BR	
$\tilde{\chi}_1^0$	171	stabil	_	
$\tilde{\chi}_2^0$	223	$ ilde{\chi}_0^1 \ell^\mp \ell^\pm$	0,07	
$\tilde{\chi}_3^{\overline{0}}$	236	$ ilde{ u}_{l} u_{l}$	1	
$\tilde{\chi}_1^{\pm}$	219	${ ilde \chi}_1^0 \ell^\pm u_{\ell^\pm}$	0,33	
ĨĹ	246	$\tilde{\chi}^{0}_{1,2,3}$ /	1	
$\tilde{\nu}_l$	233	$\tilde{\chi}_1^0 \nu_l$	1	
${ ilde g}$	965	$\tilde{\chi}^{0}_{1,2,3} t \overline{t}$	0,54	
		$\tilde{\chi}_1^- t \bar{b}$	0,44	
;		t \tilde{t}	W	

Chargino /	Neutralino	Paare
------------	------------	-------

- Für χ₂⁰ χ₂⁰ Paarerzeugung σ = 467 ab ⇒ 0,05 Ereignisse in Endzuständen mit vier Leptonen in 20,3 fb⁻¹ Daten
- $\tilde{\chi}^0_3$ und $\tilde{\chi}^\pm_1$ zuerfallen nicht in Leptonenpaare
- → Keine 4 Leptonen Endzustände

• Slepton & Sneutrino Paare

- Sneutrino zerfällt in kein Lepton
- Zerfallsbreite $< 10^{-6}$ für
- $\widetilde{ll} \to (\widetilde{\chi}_2^0 l) (\widetilde{\chi}_3^0 l) \to (\widetilde{\chi}_1^0 lll) (\widetilde{\nu}_l \nu_l l)$
- → Keine 4 Leptonen Endzustände

Gluinopare

- Gluinos erzeugen Top-Quarks mit Zerfallsbreite von 98 %
- Für ğ̃g Paarerzeugung σ = 28 fb ⇒ 1,9 Ereignisse in Endzuständen mit vier Leptonen in 20.3 fb⁻¹ Daten

vier Leptonen in 20,3 fb⁻ ' Date

→ 4 Leptonen Endzustände

νī

Ereignisgenerierung

09.03.2015 8/9

= nar

Ereignisgenerierung

Sample Luminosität gegen maximale Anzahl an Signalereignissen

- Ereignisgenerierung mit bis zu 3 Millionen Ereignissen pro Model
- Nur 5 Modelle (0,05%) in der Region $L_s < 60 \text{ fb}^{-1}$ und $N_{SR}^{max} < 10$
- 60 fb⁻¹ entsprechen der dreifachen Datenmenge des ATLAS-Detektors (20,3 fb⁻¹)