

Outline:

- Motivation
- [segmented] BEGe detector
- First measurements on segmented BEGe detector
- Pulse shape simulation
- Summary & outlook

Heng-Ye Liao

for the GEDET collaboration Max-Planck-Institut für Physik DPG Frühjahrstagung @ Wuppertal, 09/03/2015

Motivation & Mission Statement

Germanium detector development:

Detector R&D for future application in fundamental physics

- ✓ Neutrinoless double beta decay
- ✓ Dark matter searches

Signal/background discrimination:

Establish techniques to distinguish signal topology from background topology

→ Use intelligent detectors

Important issue:

Good understanding of the detector response to minimize systematic uncertainties

Broad Energy Germanium Detector

- High Purity Germanium detector in general:
 - ✓ Excellent energy resolution
 - ✓ Intrinsically clean
- Broad Energy Germanium Detector
- Widely used for many experiments: GERDA/MAJORANA, CDEX, CoGeNT,...
- Advantages for BEGe detector:
- ✓ smaller p⁺ contact ⇒ less noise
- ✓ Well pronounced weighting field:
 - Powerful PSD
 - **PSD:** Pulse Shape Discrimination

Broad Energy Germanium Detector

- **Broad Energy Germanium Detector**
- Widely used for many experiments: GERDA/MAJORANA, CDEX, CoGeNT, .
- Advantages for BEGe detector:
- ✓ smaller p⁺ contact ⇒ less noise
 - Well pronounced weighting field:
 - Powerful PSD

PSD: Pulse Shape Discrimination

Broad Energy Germanium Detector

- Broad Energy Germanium Detector
- Widely used for many experiments: GERDA/MAJORANA, CDEX, CoGeNT,..
- Advantages for BEGe detector:
- ✓ smaller p⁺ contact ⇒ less noise
- ✓ Well pronounced weighting field:
 - Powerful PSD
 - PSD: Pulse Shape Discrimination
- Disadvantages for BEGes:

<u>1D degeneracy in (φ, z)</u>

extra segmentations to reconstruct event position

Segmented Broad Energy Germanium Detector

- Designed by the GEDET group, made by Canberra France
- n-type BEGe detector
- Point contact with 4-fold segmentation
- 3D event reconstruction:
- Segmentation design:
 - ✓ Minimizing amount of contacts
 - ✓ Maximizing retrieval of information
- Configurations:
 Dimension: φ 75mm x 40mm
 Mass: 940 g
 HV: +4500 Volt (on N⁺ contact)

Test Facility

- Canberra test stand:
- Conventional vacuum cryostat
- Single detector:

cooling finger submerged in LN2

- 2 copper ears to house electronics stand alone preamp for core single preamp/segment
- Flexible device capable to scan through different (r, φ, z)

Characterization using ¹³³Barium source

Hit Positions at X-Z plane from simulation

Pulse Shape Simulation

- Why pulse shape simulation? Improve the understanding of Germanium detector
 - impurity distribution
 - charge trapping
 - charge collection efficiency
 - Sensitivity of event position reconstruction
- Simulation tools:
- ✓ Geant4: physics process ⇒ hit info
- ✓ MaGe: Pulse shape simulation
 Field calculation
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓

induced charge on the electrode (waveform)

Summary & Outlook

Summary:

- BEGe detector with extra segmentations useful to disentangle different event topologies
- The segmented BEGe detector is designed by GEDET group and built by Canberra France
- Characterization using ¹³³Ba source

Outlook:

- Validate Monte Carlo
- Determine algorithms for event position reconstruction
- Measure HPGe parameters like impurity concentration, e/h mobility