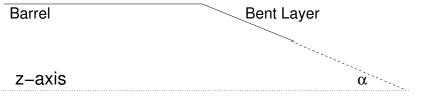

SVD Hits for CDC Tracks

lan J. Watson

University of Tokyo

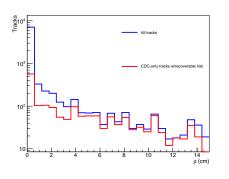
Belle 2 F2F Tracking Meeting April 21-22, 2015

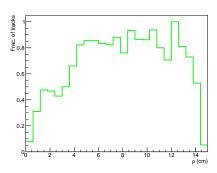

Project Goals

Example: pion from K_S decays between layer 3 & 4, not found by VXD track finder

- Current tracking requires particle can be found stand-alone in VXD for VXD hits to be used
- But, e.g., K_S can decay inside VXD, leaving some VXD hits without enough to find as a standalone track
- Idea for this project is to create a module to take CDC-only tracks and extrapolate back into VXD, create new track adding compatible VXD hits

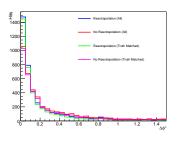
Cone Algorithm

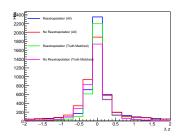



- For method I started attempting (next page), needed to extrapolate to the bent layer, far from effective cylinder
- Added extrapolateToCone method to genfit
 - So, as a warning, adding the code as it stands to BASF2 requires also an (small) addition to genfit
- Used extrapolateToCylinder as base (also, used for barrel part)
 - Gets the straightline distance to the surface, extrapolates the track by that much, loops until the distance to the surface is within a tolerance
- Defined cone by a point of the tip, conical axis, and opening angle
 - Defined bent surface by figure above, with angle and relevant radii input by hand from SVD-Components.xml
- Implemented as extrapolateToCylinder with cone-line intersection

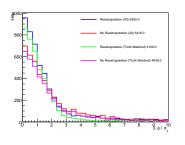
Basic Algorithm

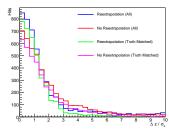
- Take tracks from genfit stage, look for ones with hits only in CDC
- Extrapolate from first hit (0th hit in the associated CDCHit container) to last layer of SVD
 - Extrapolate to the effective cylinder of layer, if beyond barrel region (in z), extrapolate again to effective cone
- Search through clusters on layer, accept closest to extrapolated track
 - \bullet First, look for z cluster (acceptance measure is Δ z)
 - Then, find a r-phi cluster ($\Delta \phi$)
 - Only accept clusters if they are within a module width (Δ × < SensorInfo.Width()/Length() / 2)
- Continue searching for clusters layer by layer, end if no cluster pair found for current layer
 - Currently, only searching in SVD layers
- If hit(s) were found, do another round of genfit (here, with DAF)
- Add tracks to a new Track output collection (if no hits added, just add the old track to the new container)
 - Needed to uncomment some code in GenFitter to allow redirecting the track collection ouput


of CDC-only reconstructed tracks with VXD hits

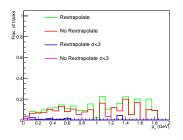


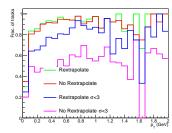
- 1000 event $\Upsilon(4S)$ sample with a $B \to [K_S \pi \pi]_D K$
- Using standard reconstruction tracking
- For these events, currently around 10% of tracks need to recover hits
- Large dependence on ρ , production radius


Adding extrapolation to sensor



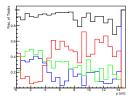
- Tested re-extrapolating to the sensor of the hit (for each hit)
 - (SVDRecoHit rhit(cluster); genfit::SharedPlanePtr plane =
 rhit.constructPlane(mop);
 mop.extrapolateToPlane(plane);)
 - So extrapolate to the basic geometry, search for hits, and for each compatible hit, do the extrapolation again to the surface of the hit detector
 - Do each time because my broad "compatible" definition means there could be several detectors
- ullet Significantly more gaussian Δ distributions

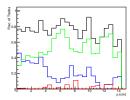

Pulls



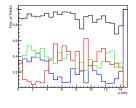
- ullet Can see that the problem that the track errors alone give an underestimate of the errors (with sensor extrap. pull widths $^\sim$ 1.3)
- From the geometry of the situation: i.e. detectors not on the effective cone/cylinder
- Timing problems extrapolating every hit (100ms vs 1s/evt vs several hundred ms/evt for all other tracking code)
 - \bullet To use the cylinder alone with a $\chi^2\text{-like}$ cutoff, would need to incorporate the geometry error
 - Will first try to cache hits / detector, so at least not rerunning extrapolation every hit

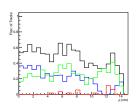
Cutoff Investigation

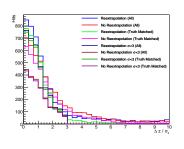


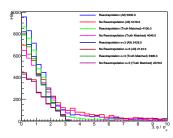


- \bullet Looked also at requiring that the best hit be within N=3 $\sigma_{\rm track}$
- Left shows the fraction of tracks recovered without truth VXD hits
 - # tracks with added VXD without truth VXD hits / Total tracks with added VXD hits
- Right shows fraction of recoverable tracks that get recovered
 - # tracks with truth VXD hits / # truth VXD tracks with added VXD hits
- Cut gets rid of bad tracks, but impacts efficiency
- Have also run N= 5σ , but need to remake plots


Cutoff Investigation (cont'd)


without σ cutoff Rextrapolating to sensor with σ cutoff


Only to cylinder/cone

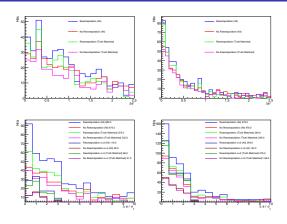


- Showing fraction of good, recovered tracks (per prev. page) # hits added same as truth MC hits fewer hits added more hits added
- Cutoff destroys the more hits component, improves exact hits in the case of extrapolation to sensor
- (Note though, not truth matching hits)

True Hits

- Also ask if hit also associated to the track's MCParticle and plot against $\Delta x/\sigma_x$ and compare against all
- Extrapolating to sensor and use a cutoff, greatly reduces the fake hits, but with some reduction in truth hits
- With Extrapolation to sensor and truth match. Add cutoff and truth match
- Pulls worse for non-sensor-extrapolated tracks, so not suprising theres a large eff. drop, want to scan cutoff

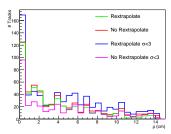
Summary

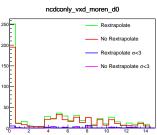

- With the error-based cutoff, can kill most of the fake hits
- Needs to extrapolate onto sensor in order to keep efficiency up, though
 - For the same σ cut-off
- Started some basic physics studies, see improvement in K_S mass and vertex resolutions (not yet quantified)

List of things I want to look at:

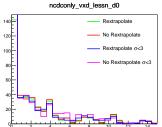
- Extrapolate to layer once, maybe twice at most (the "re-extrapolation" gives 1s/evt)
 - Might try first solving this by "caching" the hits by saving to a map (Sensor->Extrapolated Position)
 - If timing is an issue later, need to investigate if we can stop extrapolation if a sensitive layer is hit?
- Add pixel layer extrapolation
- \bullet Tuning of the σ cutoff
- Code cleanup

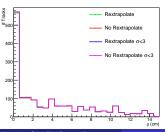

BACKUP


Bent layer

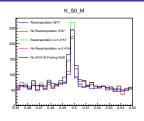


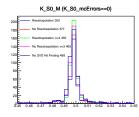
- Top left shows $\Delta \phi$ without the u-coord wedge shape correction (previous presentation results), right with the correction
- Bottom row is the pull distributions on the bent layer
- ullet Without wedge correction, severe drop in efficiency with σ cutoff

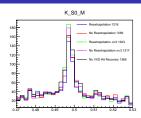

Cutoff Investigation



Less

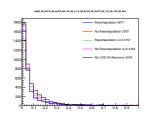


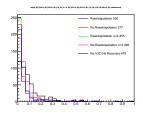

Total tracks with added hits

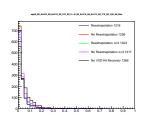


More

Impact on K_S mass







- Events have been $B \to [K_S \pi \pi]_D K$
- Tried reconstructing K_S in those events
 - Both by vertexing $\pi\pi$, no cuts, and stdKshort()
- Plots are all $\pi\pi$, truth matched $\pi\pi$, and stdKshort()
 - Unfortunately, haven't gotten truth matching information in stdKshort() to work
- ullet Some losses when using the added VXD information, but with the σ cutoff and sensor extrapolation, this is minimal
- Improves mass resolution

Impact on K_S vertex

- Plots as for prev. page but with the error of the vertex radius
- Again, see that the inclusion of VXD hits improves errors