Gauge Symmetries in F-theory

Pierre Corvilain

Work done with Andres Collinucci

Université Libre de Bruxelles

IMPRS Workshop, Munich March 16, 2015

Introduction

 $\text{F-theory} \subset \text{String theory}$

Basic idea: particles are in fact tiny strings

Introduction

F-theory \subset String theory

Basic idea: particles are in fact tiny strings

QFT loop expansion

replaced by expansion in surfaces with holes

Introduction

F-theory \subset String theory

Basic idea: particles are in fact tiny strings

QFT loop expansion

replaced by expansion in surfaces with holes

 \Longrightarrow Defined perturbatively, parameter: **string coupling** g_s

String coupling

 g_{s} determined by the value of the **dilaton** field ϕ

$$g_s \sim e^\phi$$

⇒ **Dynamical** parameter ! No reason to be small and constant.

String coupling

 g_{s} determined by the value of the **dilaton** field ϕ

$$g_s \sim e^\phi$$

⇒ **Dynamical** parameter ! No reason to be small and constant.

F-theory : allow treatment when g_s varies and $g_s pprox 1$

String coupling

 g_s determined by the value of the **dilaton** field ϕ

$$g_{\rm s}\sim e^{\phi}$$

 \implies Dynamical parameter ! No reason to be small and constant.

F-theory : allow treatment when g_s varies and $g_s pprox 1$

Inevitable in presence of D7-branes

- \hookrightarrow Magnetic potential: axion field $\emph{\textbf{C}}_0$
- \implies 2 scalars fields varying along the space

$$\phi$$
 and C_0

General idea of F-theory : 2 scalars \leftrightarrow Kaluza-Klein reduction on a torus

General idea of F-theory : $2 \text{ scalars} \leftrightarrow \text{Kaluza-Klein reduction on a torus}$ More precisely, introduce the **axio-dilaton**

$$\tau = C_0 + i e^{-\phi}$$

General idea of F-theory : 2 scalars ↔ Kaluza-Klein reduction on a torus More precisely, introduce the **axio-dilaton**

$$\tau = C_0 + i e^{-\phi}$$

Type IIB effective Lagrangian

$$\mathcal{L} \ \sim \ -\frac{\mathsf{d}\,\tau \wedge \star \,\mathsf{d}\,\bar{\tau}}{2\,(\mathsf{Im}\,\tau)^2} + ...$$

Invariant under

$$\tau \rightarrow \frac{a\tau+b}{c\tau+d}, \qquad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2,\mathbb{Z})$$

General idea of F-theory : 2 scalars \leftrightarrow Kaluza-Klein reduction on a torus

More precisely, introduce the axio-dilaton

$$au = C_0 + i e^{-\phi}$$

Type IIB effective Lagrangian

$$\mathcal{L} \ \sim \ -\frac{\mathrm{d}\,\tau \wedge \star \,\mathrm{d}\,\bar{\tau}}{2\,(\mathrm{Im}\,\tau)^2} + ...$$

[Vafa '96]

Invariant under

$$\tau \rightarrow \frac{a\tau+b}{c\tau+d}, \qquad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2,\mathbb{Z})$$

 $\Rightarrow~\tau \sim$ modular parameter of a torus

$$\tau = \tau(u_i)$$

Elliptic fibration

Weierstrass equation

$$y^2 = x^3 + f x + g,$$
 $(x, y) \in \mathbb{C}^2.$

Weierstrass equation

$$y^2 = x^3 + f x + g, \qquad (x, y) \in \mathbb{C}^2.$$

f and **g** give the **shape** of the torus $\leftrightarrow \tau$

Weierstrass equation

$$y^2 = x^3 + f x + g, \qquad (x, y) \in \mathbb{C}^2.$$

f and **g** give the **shape** of the torus $\leftrightarrow \tau$

 \Rightarrow Should vary along the base!

Weierstrass equation

$$y^2 = x^3 + f(u_i)x + g(u_i),$$
 $(x, y) \in \mathbb{C}^2.$

f and **g** give the **shape** of the torus $\leftrightarrow \tau = \tau(u_i)$

 \Rightarrow Should vary along the base!

Geometric picture for D7-branes

 $au
ightarrow i\infty$ at the position of a D7 $\ \Leftrightarrow$ a cycle of the torus collapses

$$\Delta = 4f^3 + 27g^2 = 0$$

$$1 y^2 = x^3 + x^2 + u$$

# D7	Singular fibre		Local form
1	$y^2 = x^3 + x^2 + u$	~ →	xy = u

# D7	Singular fibre		Local form
1	$y^2 = x^3 + x^2 + u$	~ →	x y = u
2	$y^2 = x^3 + x^2 + u^2$	~ →	$x y = u^2$

# D7	Singular fibre		Local form
1	$y^2 = x^3 + x^2 + u$	~ →	xy = u
2	$y^2 = x^3 + x^2 + u^2$	~ →	$x y = u^2$
n	$y^2 = x^3 + x^2 + u^n$	~ →	$x y = u^n$

# D7	Singular fibre		Local form	Singularity (total space)
1	$y^2 = x^3 + x^2 + u$	~ →	x y = u	none
2	$y^2 = x^3 + x^2 + u^2$	~ →	$x y = u^2$	A_1
n	$y^2 = x^3 + x^2 + u^n$	~ →	$xy = u^n$	A_{n-1}

# D7	Singular fibre		Local form	Singularity (total space)
1	$y^2 = x^3 + x^2 + u$	~ →	xy = u	none
2	$y^2 = x^3 + x^2 + u^2$	~ →	$x y = u^2$	A_1
n	$y^2 = x^3 + x^2 + u^n$	~ →	$xy = u^n$	A_{n-1}

How to treat these singularities ?

Example of a blow-up

Example of a blow-up

For the A_1 singularity

Example of a blow-up

For the A_1 singularity

Example of a blow-up

For the A_4 singularity

Example of a blow-up

For the A_4 singularity

Every time: (extended) **Dynkin diagram** $\Gamma_i \cap \Gamma_j \sim -C_{ij}$

These new cycles yield to a gauge theory

These new cycles yield to a gauge theory

• Cartan subalgebra: $\Gamma_i \leftrightarrow \omega_i$ (harmonic 2-form) by Poincaré duality.

$$C_3 \sim \omega_i \wedge A^i_\mu \quad \Rightarrow \quad \text{massless U(1)'s}$$

These new cycles yield to a gauge theory

• Cartan subalgebra: $\Gamma_i \leftrightarrow \omega_i$ (harmonic 2-form) by Poincaré duality.

$$C_3 \sim \omega_i \wedge A^i_\mu \quad \Rightarrow \quad \text{massless U(1)'s}$$

• Roots : M2-branes wrapping Γ_i 's \leadsto charged under the Cartan U(1)'s

These new cycles yield to a gauge theory

• Cartan subalgebra: $\Gamma_i \leftrightarrow \omega_i$ (harmonic 2-form) by Poincaré duality.

$$C_3 \sim \omega_i \wedge A^i_\mu \quad \Rightarrow \quad \text{massless U(1)'s}$$

• Roots : M2-branes wrapping Γ_i 's \leadsto charged under the Cartan U(1)'s

# D7	Singularity	Gauge group
2	$x y = u^2$	SU(2)
n	$xy = u^n$	SU(n)
	$y^2 = x^3 + u^5$	E ₈

U(1)'s have no Dynkin diagram!

U(1)'s have no Dynkin diagram!

• String theory: brane \leftrightarrow U(1) gauge symmetry

U(1)'s have no Dynkin diagram!

- String theory: brane \leftrightarrow U(1) gauge symmetry
- In F-theory: the space is smooth.

U(1)'s have no Dynkin diagram!

- String theory: brane \leftrightarrow U(1) gauge symmetry
- In F-theory: the space is smooth.

 \Rightarrow trick : 2 branes intersecting at angle.

Abelian Gauge symmetries

U(1)'s have no Dynkin diagram!

- String theory: brane \leftrightarrow U(1) gauge symmetry
- In F-theory: the space is smooth.

 \Rightarrow trick : 2 branes intersecting at angle.

 \hookrightarrow charged matter under the 2 U(1)'s.

F-theory lift

Higher codimension singularity, of **conifold** type

$$x y = u v$$

F-theory lift

Higher codimension singularity, of **conifold** type

$$x y = u v$$

Resolution yields \mathbb{P}^1 's

F-theory lift

Higher codimension singularity, of **conifold** type

$$x y = u v$$

Resolution yields \mathbb{P}^1 's

Wrapped by M2-branes → charged matter

Global Models

Studied in [Braun, Collinucci, Valandro '14]

Combining the two

$$(\eta_1^2 - \xi^2 \psi_1^2) (\eta_2^2 - \xi^2 \chi_2) = 0.$$

Weierstrass equation:

$$y^2 = x^3 + b_2 x^2 + 2 \eta_1 \eta_2 x + \eta_2^2 \psi_1^2 + \eta_1^2 \chi_2 - b_2 \psi_1^2 \chi_2.$$

Weierstrass equation:

$$y^2 = x^3 + b_2 x^2 + 2 \eta_1 \eta_2 x + \eta_2^2 \psi_1^2 + \eta_1^2 \chi_2 - b_2 \psi_1^2 \chi_2.$$

Going to a Zariski open $\psi_1 \neq 0$, and neglecting the x^3 term, we manage to bring it into a conifold form

$$\begin{split} \left(y + \eta_2 \psi_1 + \frac{\eta_1}{\psi_1} x \right) \left(y - \eta_2 \psi_1 - \frac{\eta_1}{\psi_1} x \right) \\ &= \left(b_2 - \frac{\eta_1^2}{\psi_1^2} \right) \left(x^2 - \chi_2 \psi_1^2 \right). \end{split}$$

Weierstrass equation:

$$y^2 = x^3 + b_2 x^2 + 2 \eta_1 \eta_2 x + \eta_2^2 \psi_1^2 + \eta_1^2 \chi_2 - b_2 \psi_1^2 \chi_2.$$

Going to a Zariski open $\psi_1 \neq 0$, and neglecting the x^3 term, we manage to bring it into a conifold form

$$\left(y + \eta_2 \psi_1 + \frac{\eta_1}{\psi_1} x \right) \left(y - \eta_2 \psi_1 - \frac{\eta_1}{\psi_1} x \right)$$

$$= \left(b_2 - \frac{\eta_1^2}{\psi_1^2} \right) \left(x^2 - \chi_2 \psi_1^2 \right).$$

New weak coupling limit of [Clingher, Donagi, Wijnholt '12] \rightsquigarrow we have detected massless U(1)'s at **weak coupling**.

Weierstrass equation:

$$y^2 = x^3 + b_2 x^2 + 2 \eta_1 \eta_2 x + \eta_2^2 \psi_1^2 + \eta_1^2 \chi_2 - b_2 \psi_1^2 \chi_2.$$

Going to a Zariski open $\psi_1 \neq 0$, and neglecting the x^3 term, we manage to bring it into a conifold form

$$\left(y + \eta_2 \psi_1 + \frac{\eta_1}{\psi_1} x \right) \left(y - \eta_2 \psi_1 - \frac{\eta_1}{\psi_1} x \right)$$

$$= \left(b_2 - \frac{\eta_1^2}{\psi_1^2} \right) \left(x^2 - \chi_2 \psi_1^2 \right).$$

New weak coupling limit of [Clingher, Donagi, Wijnholt '12] \rightsquigarrow we have detected massless U(1)'s at **weak coupling**. We checked this was still the case at **strong coupling** (as it was expected since [D7] = [D7'])

Mathematical tool to treat singularities [Eisenbud '80] introduced in F-theory in [Collinucci, Savelli '14]

Mathematical tool to treat singularities [Eisenbud '80] introduced in F-theory in [Collinucci, Savelli '14]

Singularity : $P = 0 \longrightarrow Matrix factorisation$:

$$\left(\begin{array}{cc} \cdot & \cdot \\ \cdot & \cdot \end{array}\right) \left(\begin{array}{cc} \cdot & \cdot \\ \cdot & \cdot \end{array}\right) = P \cdot \mathbb{1}$$

Mathematical tool to treat singularities [Eisenbud '80] introduced in F-theory in [Collinucci, Savelli '14]

Conifold : $xy - uv = 0 \longrightarrow Matrix factorisation :$

$$\begin{pmatrix} x & u \\ v & y \end{pmatrix} \begin{pmatrix} y - u \\ -v & x \end{pmatrix} = (x y - u v) \cdot \mathbb{1}$$

Mathematical tool to treat singularities [Eisenbud '80] introduced in F-theory in [Collinucci, Savelli '14]

Conifold : $xy - uv = 0 \longrightarrow Matrix factorisation :$

$$\begin{pmatrix} x & u \\ v & y \end{pmatrix} \begin{pmatrix} y - u \\ -v & x \end{pmatrix} = (x y - u v) \cdot \mathbb{1}$$

Reveals the structure of the singularity

$$\begin{pmatrix} x & u \\ v & y \end{pmatrix} \begin{pmatrix} s \\ t \end{pmatrix} = 0$$

 \hookrightarrow non-Cartier divisor \leftrightarrow U(1).

Mathematical tool to treat singularities [Eisenbud '80] introduced in F-theory in [Collinucci, Savelli '14]

Conifold : $xy - uv = 0 \longrightarrow Matrix factorisation :$

$$\begin{pmatrix} x & u \\ v & y \end{pmatrix} \begin{pmatrix} y - u \\ -v & x \end{pmatrix} = (xy - uv) \cdot \mathbb{1}$$

Reveals the structure of the singularity

$$\begin{pmatrix} x & u \\ v & y \end{pmatrix} \begin{pmatrix} s \\ t \end{pmatrix} = 0$$

 \hookrightarrow non-Cartier divisor \leftrightarrow U(1).

Hope: no need to go to a Zariski open

Thank you

Weak coupling limit

Weierstrass equation can be rewritten

$$y^2 = x^3 + b_2 x^2 + 2b_4 x + b_6$$

Weak coupling $\epsilon \to 0$

$$b_4 \rightarrow \epsilon \ b_4 - \frac{1}{2} \xi_2 \psi_1^2 \epsilon^2$$

 $b_6 \rightarrow \epsilon \ b_6$

$$\widehat{W_5}: \qquad y^2 = x^3 v + b_2 x^2 + (2b_4 t - \xi_2 \psi_1^2 t^2 v) x + b_6 t^2$$

$$\left(y + \eta_2 \psi_1 t + \frac{\eta_1}{\psi_1} x\right) \left(y - \eta_2 \psi_1 t - \frac{\eta_1}{\psi_1} x\right)$$

$$= \left(b_2 - \frac{\eta_1^2}{\psi_1^2}\right) \left(x^2 - \chi_2 \psi_1^2 t^2\right).$$

(at weak coupling)

Weak coupling limit

Weierstrass equation can be rewritten

$$y^2 = x^3 + b_2 x^2 + 2b_4 x + b_6$$

Weak coupling $\epsilon \to 0$

$$b_4 \to \epsilon \ b_4 - \frac{1}{2} \xi_2 \psi_1^2 \epsilon^2$$

 $b_6 \to \epsilon \ b_6$

$$\widehat{W_5}: \qquad y^2 = x^3 \, v + b_2 x^2 + (2b_4 \, t - \xi_2 \psi_1^2 \, t^2 v) \, x + b_6 t^2$$

$$\left(y + \eta_2 \psi_1 \, \epsilon + \frac{\eta_1}{\psi_1} \, x \right) \left(y - \eta_2 \psi_1 \, \epsilon - \frac{\eta_1}{\psi_1} \, x \right)$$

$$= \left(x + b_2 - \frac{\eta_1^2}{\psi_1^2} \right) \left(x^2 - \chi_2 \psi_1^2 \, \epsilon^2 \right).$$
(at strong coupling)