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replaced by expansion in surfaces with holes
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Defined perturbatively, )

parameter: string coupling g W
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Inevitable in presence of D7-branes
— Magnetic potential: axion field Cyp Tg
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Geometric formulation
General idea of F-theory :
2 scalars <+ Kaluza-Klein reduction on a torus

More precisely, introduce the axio-dilaton

7T=C + ie ?
Type IIB effective Lagrangian

dr AxdT

C Y ime

Invariant under
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L(2,Z
CT—{—d’ <Cd>€5(’)

= 7 ~ modular parameter of a torus
[Vafa '96]
T =71(u;)
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Algebraic description of a torus

Weierstrass equation

y2:X3+f(U,‘)X+g(Ui), (X)y)e(c2‘

f and g give the shape of the torus +» 7 = 7(u;)

= Should vary along the base !



Geometric picture for D7-branes

T — ico at the position of a D7 < a cycle of the torus collapses

A=4f34+27g°=0
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Weierstrass equation for D7-branes

Singularity
# D7 Singular fibre Local form  (total space)
1 V2=x34+x>4+u ~ xy=u none
2 v2=x34+x2+1u* ~ xy=u? Ar
n V2=x34x24+u" ~ xy=u" An_1

How to treat these singularities 7
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Example of a blow-up
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Every time: (extended) Dynkin diagram ;N T; ~ —Cj
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Gauge theory

These new cycles yield to a gauge theory

e Cartan subalgebra: T; <> w; (harmonic 2-form) by Poincaré
duality. .
G ~wiNA, = massless U(1)'s

e Roots : M2-branes wrapping [;'s ~» charged under the Cartan
U(1)'s
# D7 Singularity Gauge group
2 xy = u? SU(2)
n xy=u" SU(n)

y2=x3+u° Es
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Abelian Gauge symmetries

U(1)'s have no Dynkin diagram !

e String theory: brane <» U(1) gauge symmetry
e In F-theory: the space is smooth.

Uu(1)
= trick : 2 branes intersecting

at angle. u@)

— charged matter under the 2
U(1)'s.
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F-theory lift

Higher codimension ‘K/:/

S
singularity, of conifold type u@)

Xy=uv

Resolution yields P's

Wrapped by M2-branes ~» charged matter



Global Models

Studied in [Braun, Collinucci, Valandro '14]
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Results
Weierstrass equation:
y? =%+ by x® 4+ 2 x + 1593 + nixa — batixa.

Going to a Zariski open 17 # 0, and neglecting the x3 term, we
manage to bring it into a conifold form

(Y+772¢1+$1X> (y—nzwl—leX>

= (bz - ZE) (X2 - leﬁ) :

New weak coupling limit of [Clingher, Donagi, Wijnholt '12]
~+ we have detected massless U(1)'s at weak coupling.

We checked this was still the case at strong coupling (as it was
expected since [D7] = [D7'])
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Matrix factorisation

Mathematical tool to treat singularities [Eisenbud '80] introduced in
F-theory in [Collinucci, Savelli '14]

Conifold: xy—uv =0 — Matrix factorisation :

X u y —u\ _uv).
(3 () e

Reveals the structure of the singularity

) @)=

— non-Cartier divisor < U(1).

Hope: no need to go to a Zariski open
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Weak coupling limit
Weierstrass equation can be rewritten
y2 = x3 + byx? + 2bsx + bg

Weak coupling ¢ — 0
1
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Weak coupling limit
Weierstrass equation can be rewritten
y2 = x3 + byx? + 2bsx + bg
Weak coupling ¢ — 0
by — € b4—%§2¢%€2
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Ws:  y?=x3v+ box®+ (2by t — &0 t2v) x + bgt?
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(at strong coupling)



