IIB compactifications

An alternative strategy to standard reduction

Conclusions

Warping the effective field theory of string flux compactifications

Stefano Andriolo

March 16th, 2015

University of Padova

Some basic notions	IIB compactifications 0000	An alternative strategy to	standard reduction	Conclusions

Objective

To study the *warp factor contribution to the Kähler potential* of the effective theory obtained from a IIB flux compactification

Some	basic	notions

Contents

Some basic notions

- Compactification and dimensional reduction
- IIB Supergravity

2 IIB compactifications

- Purely geometric compactifications
- Flux compactifications
- 3 An alternative strategy to standard reduction

4 Conclusions

Some basic notions ●○○○ IIB compactifications

An alternative strategy to standard reduction

Conclusions

Compactification and dimensional reduction

What is a compactification?

STRING THEORY 10d \leftrightarrow OBSERVATION 4d

Some basic notions ●○○○ IIB compactifications

An alternative strategy to standard reduction

Conclusions

Compactification and dimensional reduction

What is a compactification?

STRING THEORY 10d \leftrightarrow OBSERVATION 4d

- Why do we observe just 4 dimensions?
- e How to get a 4d theory?

Some basic notions ●○○○ IIB compactifications

An alternative strategy to standard reduction

Conclusions

Compactification and dimensional reduction

What is a compactification?

STRING THEORY 10d \leftrightarrow OBSERVATION 4d

- Why do we observe just 4 dimensions?
- e How to get a 4d theory?

In order to probe extra dimensions we need energies $E \sim \frac{1}{R}$ R "small enough" \Rightarrow extra dimensions are *hidden* (e.g. $R \simeq 10^{-33} cm \div 10^{-17} cm$)

Some basic notions ○○●○	IIB compactifications	An alternative strategy to standard reduction	Conclusions
B Supergravity			
IIB Supergra	vity		

It is the *low energy limit* of the Type IIB Superstring theory.

Some basic notions ००●०	IIB compactifications 0000	An alternative strategy to standard reduction	Conclusions
B Supergravity			
IIB Supergr	avity		

It is the *low energy limit* of the Type IIB Superstring theory. Closed string sector (bosonic action):

$$\begin{split} S_{\rm IIB} &= \; \frac{1}{2\kappa_{10}^2} \int d^{10} x \sqrt{-g_{\rm s}} \; e^{-2\phi} \left(R + 4 (\nabla \phi)^2 - \frac{1}{2} |H_3|^2 \right) \\ &- \frac{1}{4\kappa_{10}^2} \int d^{10} x \sqrt{-g_{\rm s}} \left(|F_1|^2 + |\tilde{F}_3|^2 + \frac{1}{2} |\tilde{F}_5|^2 \right) \\ &+ \frac{1}{4\kappa_{10}^2} \int C_4 \wedge H_3 \wedge F_3 \quad \text{with} \; \; H_3, F_1, F_3, F_5, \; \text{``fluxes''} \end{split}$$

NS-NS sector: g, B_2, ϕ R-R sector: C_0, C_2, C_4 closed string

Some basic notions ००●०	IIB compactifications 0000	An alternative strategy to standard reduction	Conclusions
B Supergravity			
IIB Supergr	avity		

It is the *low energy limit* of the Type IIB Superstring theory. Closed string sector (bosonic action):

$$\begin{split} S_{\rm IIB} &= \; \frac{1}{2\kappa_{10}^2} \int d^{10} x \sqrt{-g_{\rm s}} \; e^{-2\phi} \left(R + 4 (\nabla \phi)^2 - \frac{1}{2} |H_3|^2 \right) \\ &- \frac{1}{4\kappa_{10}^2} \int d^{10} x \sqrt{-g_{\rm s}} \left(|F_1|^2 + |\tilde{F}_3|^2 + \frac{1}{2} |\tilde{F}_5|^2 \right) \\ &+ \frac{1}{4\kappa_{10}^2} \int C_4 \wedge H_3 \wedge F_3 \quad \text{with} \; \; H_3, F_1, F_3, F_5, \; \text{``fluxes''} \end{split}$$

NS-NS sector: g, B_2, ϕ R-R sector: C_0, C_2, C_4

Some basic notions ○○○●	IIB compactifications 0000	An alternative strategy	to standard reduction	Conclusions
IIB Supergravity				

Open string sector $\rightarrow Dp$ -branes

- p spatial dimensions
- dynamical
- gauge theories (on their own surfaces) \hookrightarrow charged matter
- ullet charged under $\mathcal{C}_{
 ho}
 ightarrow$ sources of fluxes

$$S_{\mathrm{D}p\mathrm{-brane}} = S_{\mathrm{DBI}} + S_{\mathrm{CS}}$$

$$\begin{split} S_{\rm DBI} &= -T_p \int_W d^{p+1} \sigma \ e^{-\phi} \sqrt{-\det(P[g-B_2] + \lambda F)} \quad , \\ S_{\rm CS} &= \mu_p \int_W \left[P\left(\sum_{\rm P} C_p e^{-B_2}\right) e^{\lambda F} \right]_{p+1} \wedge \hat{A}(R) \end{split}$$

IIB compactifications ●○○○ An alternative strategy to standard reduction

Conclusions

Purely geometric compactifications

Purely geometric IIB compactifications

Most general starting Ansatz $M^{1,3} imes M_6$

 $M^{1,3}$ maximally symmetric

IIB compactifications ●○○○ Conclusions

Purely geometric compactifications

Purely geometric IIB compactifications

Most general starting Ansatz $M^{1,3} imes M_6$

 $M^{1,3}$ maximally symmetric

Purely geometric compactifications are characterised by a background in which the only field turned on is the metric:

$$ds_{10}^2 = ds_4^2(x) + ds_6^2(y)$$

with

$$ds_6^2$$
 Ricci-flat ($R_{mn} = 0$, M_6 is Calabi-Yau)

IIB compactifications ●○○○ Conclusions

Purely geometric compactifications

Purely geometric IIB compactifications

Most general starting Ansatz $M^{1,3} imes M_6$

 $M^{1,3}$ maximally symmetric

Purely geometric compactifications are characterised by a background in which the only field turned on is the metric:

$$ds_{10}^2 = ds_4^2(x) + ds_6^2(y)$$

with

$$ds_6^2$$
 Ricci-flat ($R_{mn} = 0$, M_6 is Calabi-Yau)

Dimensional reduction → 4d sugra N = 2, not so realistic:
 no chiral matter

• no moduli stabilisation/no $\frac{\text{SUSY}}{\text{SUSY}}$ mechanism ($ightarrow \mathcal{N}=0$)

IIB compactifications ○●○○ An alternative strategy to standard reduction

Conclusions

Flux compactifications

Compattificazioni IIB con flussi (GKP)

Solution: *enriching background:* $H_3, F_1, F_3, F_5 \neq 0$

IIB compactifications ○●○○ An alternative strategy to standard reduction

Conclusions

Flux compactifications

Compattificazioni IIB con flussi (GKP)

Solution: enriching background: $H_3, F_1, F_3, F_5 \neq 0$

 $ds_{10}^2 = e^{2A(y)} ds_4^2(x) + ds_6^2(y)$

IIB compactifications ○●○○ An alternative strategy to standard reduction

Conclusions

Flux compactifications

Compattificazioni IIB con flussi (GKP)

Solution: *enriching* background: $H_3, F_1, F_3, F_5 \neq 0$

$ds_{10}^2 = \frac{e^{2A(y)}}{ds_4^2(x)} + \frac{ds_6^2(y)}{ds_6^2(y)}$

Among all fluxed backgrounds, we chose a particular class:

Background GKP [Giddings, Kachru, Polchinski 2002] $ds_{10}^2 = e^{2A(y)}\eta_{\mu\nu}dx^{\mu}dx^{\nu} + e^{-2A(y)}d\tilde{s}_6^2(y)$ $d\tilde{s}_6^2 \text{ is Ricci-flat (Calabi-Yau)}$

IIB compactifications ○●○○ Conclusions

Flux compactifications

Compattificazioni IIB con flussi (GKP)

Solution: enriching background: $H_3, F_1, F_3, F_5 \neq 0$

$ds_{10}^2 = \frac{e^{2A(y)}}{ds_4^2(x)} + \frac{ds_6^2(y)}{ds_6^2(y)}$

Among all fluxed backgrounds, we chose a particular class:

Background GKP [Giddings, Kachru, Polchinski 2002]

$$ds_{10}^2 = e^{2A(y)}\eta_{\mu\nu}dx^{\mu}dx^{\nu} + e^{-2A(y)}d\tilde{s}_6^2(y)$$

 $d\tilde{s}_6^2$ is Ricci–flat (Calabi–Yau)

 $\mathsf{Consistency} \to \mathsf{sources} \text{ of fluxes}:$

- D*p*-branes
- Op-planes (not dynamical)

IIB compactifications

An alternative strategy to standard reduction

Conclusions

Flux compactifications

IIB warped compactifications: pros

Some basic notions IIB compactifications

An alternative strategy to standard reduction

Conclusions

Flux compactifications

IIB warped compactifications: pros

• Dimensional reduction \rightarrow richer 4d theory

IIB compactifications

An alternative strategy to standard reduction

Conclusions

Flux compactifications

IIB warped compactifications: pros

► Dimensional reduction → richer 4d theory

IIB compactifications

An alternative strategy to standard reduction

Conclusions

Flux compactifications

IIB warped compactifications: pros

• Dimensional reduction \rightarrow richer 4d theory

Some basic notions 0000	IIB compactifications 000●	An alternative strategy to standard reduction	Conclusions
Flux compactifications			
Ad effective	theory		
	LIEULY		

$$e^{-1}\mathcal{L}_{
m 4d}^{\mathcal{N}=1} = rac{M_{
m P}^2}{2}R - M_{
m P}^2 \,\,g_{iar j}\,\,\partial_\mu arphi^i \partial^\mu ar arphi^ar - V_{
m F} + ...$$

 $arphi^i(u(x)) \quad ext{chiral fields}$

 $\mathcal{K}(arphi,ar{arphi})$ Kähler potential $o g_{iar{\jmath}} = \partial_i\partial_{ar{\jmath}}\mathcal{K}$ Kähler metric

Some basic notions	IIB compactifications 000●	An alternative strategy to standard reduction	Conclusions
Flux compactifications			
4d effective	theory		

$$e^{-1}\mathcal{L}_{\rm 4d}^{\mathcal{N}=1} = \frac{M_{\rm P}^2}{2}R - M_{\rm P}^2 g_{i\bar{\jmath}} \partial_\mu \varphi^i \partial^\mu \bar{\varphi}^{\bar{\jmath}} - V_F + ...$$
$$\varphi^i(u(x)) \quad \text{chiral fields}$$

 $K(\varphi, \overline{\varphi})$ Kähler potential $\rightarrow g_{i\overline{j}} = \partial_i \partial_{\overline{j}} K$ Kähler metric Problem: warp factor $e^{2A(y)}$ makes the reduction hard!

Some basic notions 0000	IIB compactifications 000●	An alternative strategy to standard reduction	Conclusions
Flux compactifications			
4d effective	theory		

$$e^{-1}\mathcal{L}_{4\mathrm{d}}^{\mathcal{N}=1} = rac{M_{\mathrm{P}}^2}{2}R - M_{\mathrm{P}}^2 g_{i\bar{\jmath}} \partial_\mu \varphi^i \partial^\mu ar{\varphi}^{\bar{\jmath}} - V_F + ...$$

 $\varphi^i(u(x))$ chiral fields

 $K(arphi,ar{arphi})$ Kähler potential $o g_{iar{\jmath}}=\partial_i\partial_{ar{\jmath}}K$ Kähler metric

Problem: warp factor $e^{2A(y)}$ makes the reduction hard!

CONSTANT WARPING APPROXIMATION $(R \gg \ell_s)$ $e^{2A(y)} \approx const$

Some basic notions 0000	IIB compactifications ○○○●	An alternative strategy to standard reduction	Conclusions
Flux compactifications			
4d effective	theory		

$$e^{-1}\mathcal{L}_{4\mathrm{d}}^{\mathcal{N}=1} = rac{M_{\mathrm{P}}^2}{2}R - M_{\mathrm{P}}^2 g_{i\bar{\jmath}} \partial_\mu \varphi^i \partial^\mu ar{\varphi}^{\bar{\jmath}} - V_F + ...$$

 $\varphi^i(u(x))$ chiral fields

 $\mathcal{K}(arphi,ar{arphi})$ Kähler potential $o g_{iar{\jmath}} = \partial_i\partial_{ar{\jmath}}\mathcal{K}$ Kähler metric

Problem: warp factor $e^{2A(y)}$ makes the reduction hard!

CONSTANT WARPING APPROXIMATION $(R \gg \ell_s)$ $e^{2A(y)} \approx const$

This is an *approximation*!! How does e^{2A} contribute to 4d eff. th.? How does it contribute to $K(\varphi, \overline{\varphi})$?

Some basic notions 0000	IIB compactifications 000●	An alternative strategy to standard reduction	Conclusions
Flux compactifications			
4d effective	theory		

$$e^{-1}\mathcal{L}_{4\mathrm{d}}^{\mathcal{N}=1} = rac{M_{\mathrm{P}}^2}{2}R - M_{\mathrm{P}}^2 g_{i\bar{\jmath}} \partial_\mu \varphi^i \partial^\mu ar{\varphi}^{\bar{\jmath}} - V_F + ...$$

 $\varphi^i(u(x))$ chiral fields

 $\mathcal{K}(arphi,ar{arphi})$ Kähler potential $o g_{iar{\jmath}} = \partial_i\partial_{ar{\jmath}}\mathcal{K}$ Kähler metric

Problem: warp factor $e^{2A(y)}$ makes the reduction hard!

CONSTANT WARPING APPROXIMATION $(R \gg \ell_s)$ $e^{2A(y)} \approx const$

This is an *approximation*!! How does e^{2A} contribute to 4d eff. th.? How does it contribute to $K(\varphi, \overline{\varphi})$? HOW TO PROCEED ?? IIB compactifications

Background GKP symmetry...

An alternative strategy to standard reduction [Douglas, Torroba, Frey,...] comes from the following

Observation

The dynamical generalisation of the starting Ansatz

$$ds_{10}^2 = e^{2A(y,u)}g_{\mu\nu}(x)dx^{\mu}dx^{\nu} + e^{-2A(y,u)}g_{mn}(y,u)dy^m dy^n + \dots$$

possesses a Weyl symmetry (gauge symmetry)

$$g_{\mu
u}
ightarrow e^{-2\sigma(x)}g_{\mu
u} \ g_{mn}
ightarrow e^{2\sigma(x)}g_{mn} \ e^{2A}
ightarrow e^{2A+2\sigma(x)}$$

IIB compactifications

Background GKP symmetry...

An alternative strategy to standard reduction [Douglas, Torroba, Frey,...] comes from the following

Observation

The dynamical generalisation of the starting Ansatz

$$ds_{10}^2 = e^{2A(y,u)}g_{\mu\nu}(x)dx^{\mu}dx^{\nu} + e^{-2A(y,u)}g_{mn}(y,u)dy^m dy^n + ...$$

possesses a Weyl symmetry (gauge symmetry)

$$g_{\mu
u}
ightarrow e^{-2\sigma(x)}g_{\mu
u} \ g_{mn}
ightarrow e^{2\sigma(x)}g_{mn} \ e^{2A}
ightarrow e^{2A+2\sigma(x)}$$

Ŷ

4d effective theory is a superconformal supergravity

IIB compactification: 0000 An alternative strategy to standard reduction

Conclusions

... and the Kähler potential

$$\checkmark$$
 gauge fixing \rightarrow 4d $\mathcal{N}=1$ sugra with

$$K(u) = -3 \log \left(4\pi \int_{\mathcal{M}_6} d^6 y \sqrt{g_6(y;u)} e^{-4\mathcal{A}(y;u)} \right)$$

$$igsquare$$
 gauge fixing $ightarrow$ 4d $\mathcal{N}=1$ sugra with

$$\mathcal{K}(u) = -3 \log \left(4\pi \int_{\mathcal{M}_6} d^6 y \sqrt{g_6(y;u)} \, e^{-4\mathcal{A}(y;u)}
ight)$$

In order to explicitly recast K(u) as K(φ, φ̄), one has to:
 find φⁱ(u) (using instantonic D3-branes as probes)

$$\blacktriangleright$$
 gauge fixing $ightarrow$ 4d $\mathcal{N}=1$ sugra with

$$\mathcal{K}(u) = -3 \log \left(4\pi \int_{\mathcal{M}_6} d^6 y \sqrt{g_6(y;u)} \, e^{-4\mathcal{A}(y;u)}
ight)$$

In order to explicitly recast K(u) as $K(\varphi, \overline{\varphi})$, one has to:

- find $\varphi^i(u)$ (using instantonic D3-branes as probes)
- 2 invert the relation $\rightarrow u^{\mathcal{A}}(\varphi,\bar{\varphi})$

$$igstarrow$$
 gauge fixing $ightarrow$ 4d $\mathcal{N}=1$ sugra with

$$\mathcal{K}(u) = -3 \log \left(4\pi \int_{\mathcal{M}_6} d^6 y \sqrt{g_6(y;u)} \, e^{-4\mathcal{A}(y;u)}
ight)$$

In order to explicitly recast K(u) as $K(arphi,ar{arphi})$, one has to:

- find $\varphi^i(u)$ (using instantonic D3-branes as probes)
- 2 invert the relation $\rightarrow u^{\mathcal{A}}(\varphi,\bar{\varphi})$

• plug
$$u^{\mathcal{A}}(\varphi,\bar{\varphi})$$
 in $\mathcal{K}(u) \to \mathcal{K}(\varphi,\bar{\varphi})$

$$\blacktriangleright$$
 gauge fixing $ightarrow$ 4d $\mathcal{N}=1$ sugra with

$$K(u) = -3 \log \left(4\pi \int_{\mathcal{M}_6} d^6 y \sqrt{g_6(y;u)} e^{-4\mathcal{A}(y;u)} \right)$$

In order to explicitly recast K(u) as $K(arphi,ar{arphi})$, one has to:

- find $\varphi^i(u)$ (using instantonic D3-branes as probes)
- 2 invert the relation $\rightarrow u^{\mathcal{A}}(\varphi,\bar{\varphi})$

3 plug
$$u^{A}(\varphi, \bar{\varphi})$$
 in $K(u) \to K(\varphi, \bar{\varphi})$

The inversion is generally not explicitly known

IIB compactifications

An alternative strategy to standard reduction

Conclusions

Results for a T^6/\mathbb{Z}_2 compactification

Background:

- 64 O3-planes
- N D3-branes
- const. F_3 , H_3 : (particular \rightarrow SUSY!!)

IIB compactifications

An alternative strategy to standard reduction

Conclusions

Results for a T^6/\mathbb{Z}_2 compactification

M

Background:

- 64 O3-planes
- N D3-branes
- const. F_3 , H_3 : (particular $\rightarrow SUSY!!$)

moduli *u*:

- Kähler moduli v^a (size deformations)
- *N* D3-brane positions Z^j_l
 (*l* = 1...*N*)

IIB compactifications

Results for a T^6/\mathbb{Z}_2 compactification

Following the procedure described above:

IIB compactifications

Results for a T^6/\mathbb{Z}_2 compactification

Following the procedure described above:

• chiral fields φ^i : Z^j_I e $\rho^a(v, Z, \overline{Z})$

IIB compactifications

Results for a T^6/\mathbb{Z}_2 compactification

- Following the procedure described above:
- chiral fields φ^i : Z_I^j e $\rho^a(v, Z, \overline{Z})$
- e the explicit Kähler potential is:

$$\begin{aligned} \mathcal{K}(\operatorname{Re}\rho, Z, \bar{Z}) &= -\log\left(t_1 t_2 t_3 + 2t_4 t_5 t_6 - t_1 t_4^2 - t_2 t_5^2 - t_3 t_6^2\right) \\ &- \log(16\pi^3 V_0) \end{aligned}$$
$$t_a &= \operatorname{Re}\rho^a - \boxed{\frac{1}{2}\sum_{I}k_a(Z_I, \bar{Z}_I)} \qquad \text{WARPING!} \end{aligned}$$

Agreement with reduction of $S_{IIB} + S_{D3}$ (unwarped limit) [Grimm,...]

Some basic notions	IIB compactifications	An alternative strategy to standard reduction	Conclusions
Conclusions			

• This strategy allows to study how the warp factor contributes exactly to K (at tree-level)

Conclusions	Some basic notions	IIB compactifications	An alternative strategy to standard reduction	Conclusions
	Conclusions			

- This strategy allows to study how the warp factor contributes exactly to K (at tree-level)
- Applied to the $\mathcal{T}^6/\mathbb{Z}_2$ compactification:
 - K (unknown so far)

OOOO	0000	All alternative strategy to standard reduction	Conclusions
Conclusions			

- This strategy allows to study how the warp factor contributes exactly to K (at tree-level)
- Applied to the $\mathcal{T}^6/\mathbb{Z}_2$ compactification:
 - K (unknown so far)
 - The result agrees with (and betters) previous results present in literature, obtained by approximations

Some basic notions	IIB compactifications	An alternative strategy to standard reduction	Conclusions
Conclusions			

- This strategy allows to study how the warp factor contributes exactly to K (at tree-level)
- Applied to the $\mathcal{T}^6/\mathbb{Z}_2$ compactification:
 - K (unknown so far)
 - The result agrees with (and betters) previous results present in literature, obtained by approximations
 - The result shows that the brane moduli contribution to K is due to the correct inclusion of the warp factor

- This strategy allows to study how the warp factor contributes exactly to K (at tree-level)
- Applied to the $\mathcal{T}^6/\mathbb{Z}_2$ compactification:
 - K (unknown so far)
 - The result agrees with (and betters) previous results present in literature, obtained by approximations
 - The result shows that the brane moduli contribution to K is due to the correct inclusion of the warp factor

Nevertheless...

• The toy model studied is still too simple to show a non-trivial *flux contribution* to *K* [L. Martucci]

- This strategy allows to study how the warp factor contributes exactly to K (at tree-level)
- Applied to the $\mathcal{T}^6/\mathbb{Z}_2$ compactification:
 - K (unknown so far)
 - The result agrees with (and betters) previous results present in literature, obtained by approximations
 - The result shows that the brane moduli contribution to K is due to the correct inclusion of the warp factor

Nevertheless...

- The toy model studied is still too simple to show a non-trivial *flux contribution* to *K* [L. Martucci]
- The next step would consist in taking into account all other "frozen" moduli (e.g. complex structure moduli)

- This strategy allows to study how the warp factor contributes exactly to *K* (at tree-level)
 - Applied to the $\mathcal{T}^6/\mathbb{Z}_2$ compactification:
 - K (unknown so far)
 - The result agrees with (and betters) previous results present in literature, obtained by approximations
 - The result shows that the brane moduli contribution to K is due to the correct inclusion of the warp factor

Nevertheless...

- The toy model studied is still too simple to show a non-trivial *flux contribution* to *K* [L. Martucci]
- The next step would consist in taking into account all other "frozen" moduli (e.g. complex structure moduli)
 - The strategy is to be generalised

THANKYOU	

IIB compactifications

An alternative strategy to standard reduction

Conclusions

Some details

4D SUPERCONFORMAL SUGRA $\mathcal{N}(\Phi, \bar{\Phi}), \mathcal{W}(\Phi), f_{\alpha\beta}(\Phi)$

Super-Poincaré symmetry, Weyl symmetry, U(1) chiral symmetry, S-supersymmetry, sp. conf. symmetry

$$e^{-1}\mathcal{L} = \frac{1}{2}\mathcal{N}R + 3\mathcal{N}_{I\bar{J}}\partial_{\mu}\Phi^{I}\partial^{\mu}\bar{\Phi}^{J} + \dots$$

$$(\varphi, \overline{\varphi}), W(\varphi), f_{\alpha\beta}(\varphi)$$

$$(\varphi, \overline{\varphi}), W(\varphi), f_{\alpha\beta}(\varphi)$$
Super-Poincaré symmetry
$$(M_{P}^{2}R - M_{P}^{2}g_{i\overline{j}}\partial_{\mu}\varphi^{i}\partial^{\mu}\overline{\varphi}^{j} + ...$$

$$K \leftrightarrow \mathcal{N}$$

$$\begin{array}{l} \mathsf{GKP} \text{ background (10D)} & \xrightarrow{reduction} & \mathsf{4D} \text{ Superconformal sugra} \\ & (S\text{-susy, sp. conf. symm. fixed}) \\ S_{IIB}^{(Ef)} = \frac{2\pi}{\ell_s^8} \int_{M^{1,3}} d^4x \sqrt{-g_4} R_4 \underbrace{\int_{M_6} d^6y \sqrt{g_6(y;u)} e^{-4A(y;u)}}_{\hookrightarrow \mathcal{N} \Rightarrow \mathcal{K}} + \dots \\ & \hookrightarrow \mathcal{N} \Rightarrow \mathcal{K} \end{array}$$

Ex: T^6/\mathbb{Z}_2 compactification: $u^A = (v^a, Z_I^j)$ $\varphi^i = (\rho^a, Z_I^j)$

 $S_{DBI} = \pi \underbrace{\int_{D_a} e^{-4A} J \wedge J}_{f(v^a, Z_l, \overline{Z}_l)} + \operatorname{Re} \rho^a(v^a, Z_l, \overline{Z}_l) + \operatorname{Re} g^a(Z_l) + \operatorname{const}$

IIB compactifications

Details on the example: the flux choice

Kähler moduli and one ends up with

$$K = -\sum_{a=1}^{3} \log \left(\operatorname{Re} \rho^{a} - \sum_{I \in D3's} \frac{|Z_{I}^{a}|^{2}}{2\operatorname{Im} \lambda} \right) + const \quad [\operatorname{Ferrara}, ...]$$