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Objective

To study the warp factor contribution to the Kahler potential of the
effective theory obtained from a IIB flux compactification
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What is a compactification?

| STRING THEORY 10d <> OBSERVATION 4d |

@ Why do we observe just 4 dimensions?
@ How to get a 4d theory?

Compactification

MlO = M1’3 X M6

Mg compact manifold of radius R

In order to probe extra dimensions we need energies E~

2l=

R “small enough” L4

extra dimensions are hidden
(e.g. R~10733cm + 10" cm)
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Dimensional Reduction (Kaluza—Klein)
Reducing Mg in the limit R < ﬁ
ys

M x Ms .
Qﬁ 10d massless field

M13 1 Kaluza-Klein
/\/ infinite number of 4d massive modes
mp ~ % > EPhys
4
truncation to massless modes
’4d effective theory (low energy) ‘ .. presenting moduli u?(x) 1?7

G How to “stabilize” moduli ? — flux compactifications...
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[IB Supergravity

It is the low energy limit of the Type IIB Superstring theory.
Closed string sector (bosonic action):

1 1
S = =5 [ d¥%/—g e (R +4(Ve)® — 2|/"/32>

2&%0
1 - 1 ~
- le — F. 2 F. 2 ) = 2
o [ v (1R + 1B+ 51
1
+ — Gy NH3 N F3 with Hs, F1, F3, Fs, “fluxes’
K10
open strings
closed string ending on
NS-NS sector: g, BQ, §Z5 ' branes
R-R sector: Co, G, Gy Q
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1IB Supergravity

Open string sector — Dp-branes

worldsheet  world volume
@ p spatial dimensions
e dynamical

@ gauge theories (on their own surfaces)
< charged matter

o charged under C, — sources of fluxes

A -
particle p=2
p=0

Sbp—brane = SpBI + Scs

Spp1 = —T,,/ dPtlo e ?\/—det(P[g — Ba] + AF)
w

Scs = p /W [P (ZP: c,,e—32> e)‘F] y A A(R)
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Purely geometric [IB compactifications

Most general starting Ansatz M3 x Mg

M3 maximally symmetric

Purely geometric compactifications are characterised by a
background in which the only field turned on is the metric:

dsty = ds;(x) + dsg(y)
with
ds62 Ricci—flat (Rmn = 0, M is Calabi-Yau)

& Dimensional reduction — 4d sugra N = 2, not so realistic:
@ no chiral matter
@ no moduli stabilisation/no SYSY¥ mechanism (— N =0)
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Flux compactifications

Compattificazioni 11B con flussi (GKP)

Solution:  enriching background: Hs, Fi, F3,Fs #0

\ 4

dsip = e ds}(x) + dsg(y)

Among all fluxed backgrounds, we chose a particular class:

Background GKP [Giddings, Kachru, Polchinski 2002]

ds?y = ezA(Y)anx”dx” + e A dE2(y)

d3? is Ricci-flat (Calabi-Yau)

Consistency — sources of fluxes:
@ Dp-branes
e Op-planes (not dynamical)
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Flux compactifications

[IB warped compactifications: pros

& Dimensional reduction — richer 4d theory

background
fluxes in Mg

10d = 4

@ Dp-branes = gauge theories and
chiral matter

D3-branes e Op'planes = 4'd sugra N =2 N =1

(03-planes) . e .
© Fluxes = moduli stabilisation and

SUSY N =2 N =1,0

vy & ¢

BACK-REACTION

Q warping () hierarchies
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Flux compactifications

4d effective theory

e LT = MTI%R — M3 gi7 0, 0" 7 — VE + ...
©'(u(x))  chiral fields
K(p, @) Kahler potential  —  gi7 = 0;0;K Kahler metric

Problem: warp factor e2A(¥) makes the reduction hard!

\ 4

CONSTANT WARPING APPROXIMATION (R > /)

e?A) ~ const

This is an approximation!! How does e?” contribute to 4d eff. th.?
How does it contribute to K(¢, ) 7 HOW TO PROCEED 77



An alternative strategy to standard reduction

Background GKP symmetry...

An alternative strategy to standard reduction
comes from the following

The dynamical generalisation of the starting Ansatz
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comes from the following

The dynamical generalisation of the starting Ansatz

d5120 = e2A(y’”)gW(x)dx“dx” + e_2A(y’”)gm,,(y, u)dy™dy" + ...

possesses a Weyl symmetry (gauge symmetry)

guv — e_2a(x)g;w

2U(x)gmn

2A+20(x)

8mn — €

A e

4

4d effective theory is a superconformal supergravity
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. and the Kahler potential

G gauge fixing — 4d N =1 sugra with
K(u) = —3log <47r/ d®y+/gs(y; u) e4A(y;”)>
Me

In order to explicitly recast K(u) as K(p, @), one has to:

O find ¢'(u) (using instantonic D3-branes as probes)

Q invert the relation — u*(y, @)

Q plug u(p, ) in K(u) — K(p, )

’The inversion is generally not explicitly known
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An alternative strategy to standard reduction

Results for a T®/Z, compactification

Background:
@ 64 O3-planes

@ N D3-branes

@ const. F3, Hs:
(particular — SUSY!!)

moduli u:

o Kahler moduli v -
(size deformations) ‘

@ N D3-brane positions Zf ; ~
(I =1...N)
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An alternative strategy to standard reduction

Results for a T®/Z, compactification

S Following the procedure described above:
@ chiral fields ¢': Zf e p’(v,Z,2)

@ the explicit Kihler potential is:

K(Rep,Z,Z) = — log (titats + 2tatste — titg — tote — t3tg)
— log(167> Vo)
1 -
t,=Rep? — §Z/g.,(z,,z,) WARPING!
/

Agreement with reduction of Sjg + Sp3 (unwarped limit)
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@ This strategy allows to study how the warp factor contributes
exactly to K (at tree-level)
o Applied to the T°/Z; compactification:

e K (unknown so far)

o The result agrees with (and betters) previous results present in
literature, obtained by approximations

o The result shows that the brane moduli contribution to K is
due to the correct inclusion of the warp factor

Nevertheless...

@ The toy model studied is still too simple to show a non-trivial
flux contribution to K

@ The next step would consist in taking into account all other
“frozen” moduli (e.g. complex structure moduli)

G The strategy is to be generalised
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Conclusions

Some details

4D SUPERCONFORMAL SUGRA 4D SUGRA

N(®, &))~ W(®), fop(P) K(p, @), W(p), fap(p)

Super-Poincaré symmetry

Super-Poincaré symmetry, %

Weyl symmetry, U(1) chiral symmetry, | FIXING R . .
S-supersymmetry, sp. conf. symmetry %R — M3gi50,p' 0 3 + ...

e 1L =INR+3N;;0,0'04d7 + .. Ko N

reduction
e

GKP background (10D) 4D Superconformal sugra

(S-susy, sp. conf. symm. fixed)

2T B N
ST = 05 o o ER [y Valiae
s : 6

< N =K




— 4D sugra: K(U) = -3 |Og (47T f/\/le d6y g6(_y, U) ef4A(y;U))
(e=*AUit) is determined by the “warping equation” — eom/BI Fs)

G- NOW: How to find chiral field /(1) ??

Susy instantonic D3-branes (probes) Instantonic D3-brane
wrapping D_ in My

Wop ~ e, SE3 = Sppgi +iScs
Ex: T%/Z, compactification: v = (v?, 7)) o = (p?,2Z])

Spsi = 7T/ e *J A J+const = Rep?(v?, Z;, Z;) + Reg®(Z)) + const
D,

a

—
f(v,2,,2))



Conclusions

Details on the example: the flux choice

dHy = dF3 =0 + quantisation = H3, F3 € H3(Ms,7):
1
@
1
@
Flux choice: (&%, by, c¥, djj) = (a, b, c,d)sV

F3 = a’ag + ¥y + b7 + bo3°
, . (cvo, @jj, 87, 3°) basis of H3
Hy = ag +7 ay + djB¥ + do°

complex struc. ()\ij SOV A), T (2 = x' + \iyh)

SUSY = < G3 = F3 — TH3~ dz' A dz? A dZ% + cycl.
JANG =0 (J=vw, e H") = 3/9 v? fixed
For a (supersymmetric) flux choice: J A Gz = 0 fixes 6/9

Kahler moduli and one ends up with

3 za 2
K=->7_1log <Repa — > 1eD3rs 2Irlnl)\> + const
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