Low-Background Scintillation Spectroscopy for the Investigation of the Radiopurity of CaWO₄ Crystals

Raphael Kneißl

IMPRS Workshop March 16th, 2015

The CRESST-II Experiment

- Direct dark matter search experiment
- Search for nuclear recoils of Weakly Interacting Massive Particles via elastic WIMP-nucleon scattering (expected WIMP signals: nuclear recoils with energies < 40 keV)

- Scintillating CaWO₄ single crystals as target material ($\sim 300 \, g$ each)
- In current run (CRESST-II phase 2)
 4 TUM-grown crystals installed for the first time
- Radiopurity of CaWO₄ crystals limits sensitivity of CRESST-II

Radiopurity of CaWO₄ Crystals in Low-Energy Regime

- Large fraction of background in low-energy regime originates from intrinsic contamination of the CaWO₄ crystals
- Relevant intrinsic decays in low-energy regime: 227 Ac ($Q_{\beta}=44.8$ keV, $T_{1/2}=21.8$ y) 234 Th ($Q_{\beta}=273$ keV, $T_{1/2}=24.1$ d) 179 Ta from cosmogenic activation
 - Background level (1-40 keV):
 - Commercial crystals used in CRESST-II: 6-30/[kg keV day]
 - TUM-grown crystal TUM-40: 3.44/[kg keV day]

Low-Background Scintillation Spectroscopy Setup

- Determination of intrinsic radioactive contaminations of CaWO₄ crystals
 - Feedback for crystal production to improve radiopurity
 - Preselection of radio-purest crystals for future CRESST runs
- Crystal is source and scintillator at the same time
 - $\longrightarrow \sim$ 100 % detection efficiency for intrinsic alpha and beta decays

Energy Calibration

- Energy calibration before and after each measurement with various gamma sources (energies of gamma lines between $\sim 60 \, \text{keV}$ and $\sim 2600 \, \text{keV}$)
- Data points well fitted by power function
- \bullet Energy resolution (FWHM) at 511 keV: $\sim14\,\%$

Pulse Shapes of Alpha and Gamma Particles

- Pulse shapes of averaged and normalized alpha and gamma pulses
- Irradiation with sources:
 - $\bullet~^{241} \text{Am}$ alpha particles with $\lesssim 5.6\,\text{MeV}$
 - ²²Na gamma rays with 1275 keV
 - Different decay times of alpha and gamma events
 - \longrightarrow pulse shape discrimination possible
 - → discrimination between alphas (internal) and gammas (internal and external)

Histogram of Energy vs. Shape Indicator

Shape indicator:

$$\mathsf{SI} = \frac{\sum_{k} f(t_k) \cdot P(t_k)}{\sum_{k} f(t_k)}$$

 $f(t_k)$: pulse amplitude at time t_k

Weight function:

$$P(t) = \frac{f_{\alpha}(t) - f_{\gamma}(t)}{f_{\alpha}(t) + f_{\gamma}(t)}$$

 Various populations in histogram due to different event types

Coincidence Search

Search for coincidence between decay of a mother isotope and a following short-lived daughter isotope

• ²³⁸U chain: ²¹⁴Bi
$$\xrightarrow{T_{1/2} = 19.9 \text{ min}} \xrightarrow{214} Po \xrightarrow{T_{1/2} = 164 \, \mu s} \xrightarrow{210} Pb$$

• ²³⁵U chain: ²¹⁹Rn
$$\xrightarrow{T_{1/2} = 3.96 \text{ s}} \xrightarrow{Q_{\alpha} = 6.9 \text{ MeV}} \xrightarrow{215} Po \xrightarrow{T_{1/2} = 1.78 \text{ ms}} \xrightarrow{211} Pb$$

• ²³²Th chain: ²²⁰Rn
$$\xrightarrow{T_{1/2} = 55.6 \text{ s}} \xrightarrow{Q_{\alpha} = 6.4 \text{ MeV}} \xrightarrow{216} Po \xrightarrow{T_{1/2} = 145 \text{ ms}} \xrightarrow{212} Pb$$

 \longrightarrow determination of ²²⁶Ra, ²²⁷Ac, and ²²⁸Th activities possible

219 Rn \longrightarrow 215 Po \longrightarrow 211 Pb Coincidence

- Energy spectrum of ²¹⁹Rn and ²¹⁵Po decay
- Total measurement time: \sim 42 d
- Number of found coincidences (accidental coincidences):

214
Bi \rightarrow 214 Po \rightarrow 210 Pb: 65 (0)
 219 Rn \rightarrow 215 Po \rightarrow 211 Pb: 120 (1)
 220 Rn \rightarrow 216 Po \rightarrow 212 Pb: 48 (10)

Alpha Spectrum - TUM-Grown Crystal

- TUM-grown crystal "Karl II"
- Energy range from 750 keV_{ee} to 2300 keV_{ee}
- Determination of ²³⁸U and ²³⁰Th activities from peaks of the spectrum
- Total alpha activity from integral over spectrum
- Alpha spectra similar for all investigated TUM-grown crystals

Alpha Spectrum - Commercial Crystal from Ukraine

- Commercial crystal "Boris"
- Energy range from 750 keV $_{ee}$ to 2300 keV $_{ee}$
- Determination of ²³⁸U and ²¹⁰Pb activities from peaks of the spectrum
- Total alpha activity from integral over spectrum

Alpha Spectrum - Commercial Crystal from Russia

- Commercial crystal "Sabine"
- Energy range from 750 keV $_{ee}$ to 2300 keV $_{ee}$
- No activity determination of specific isotopes from spectrum possible
- Total alpha activity from integral over spectrum

Activities of TUM-Grown Crystals

TUM-grown crystals

	Jakob II	LGS	Ernst	Karl II
	activity [mBq/kg]			
total alpha activity $(750-2300 \text{keV}_{ee})$	3.75 ± 0.92	5.77 ± 0.77	5.45 ± 0.38	6.14 ± 0.93
²³⁸ U	0.53 ± 0.10	1.42 ± 0.24	1.41 ± 0.18	1.98 ± 0.29
²³⁰ Th	1.03 ± 0.20	$\boldsymbol{0.95 \pm 0.40}$	$\boldsymbol{0.70 \pm 0.31}$	$\boldsymbol{0.94 \pm 0.48}$
²²⁶ Ra	$0.055{}^{+0.019}_{-0.016}$	$0.196{}^{+ 0.021}_{- 0.019}$	$0.053 {}^{+ 0.019}_{- 0.016}$	$0.088 {}^{+ 0.018}_{- 0.016}$
²²⁷ Ac	$0.143 {}^{+ 0.017}_{- 0.015}$	$0.117{}^{+ 0.011}_{- 0.010}$	$0.111{}^{+ 0.015}_{- 0.013}$	$0.143 {}^{+\ 0.014}_{-\ 0.013}$
²²⁸ Th	< 0.015	$0.028 {}^{+ 0.008}_{- 0.007}$	< 0.020	$0.038^{+0.012}_{-0.010}$
raw material supplier	AA^1	AA^1	MV^2	MV^2
growth number	1	6	1	2

¹ Alfa Aesar; ² MV Laboratories

Feedback for Crystal Production Process

- Radiopurity of crystals depends on raw materials
 - → importance of raw material preselection
- Radiopurity improves with decreasing growth number
 - crystal growth is purification process (strongly depending on element)
 - ---- regularly remove residual melt or try recrystallisation

Activities of Commercial Crystals

Commercial crystals

	Boris	Sabine	
	activity [mBq/kg]		
total alpha activity (750-2300 keV _{ee})	1293 ± 6	14.85 ± 0.76	
²³⁸ U	8.22 ± 0.47	_	
²²⁶ Ra	$4.830^{+0.149}_{-0.145}$	$0.722^{+0.052}_{-0.049}$	
²²⁷ Ac	$0.360{}^{+0.033}_{-0.030}$	$1.181^{+0.042}_{-0.040}$	
²²⁸ Th	$0.099^{+0.027}_{-0.023}$	$0.351^{+0.029}_{-0.027}$	
²¹⁰ Pb	1269 ± 4	_	

Conclusion and Outlook

Conclusion

- Activities determined down to the μ Bq/kg level
- Important feedback for crystal production process
- Preselection of CaWO₄ crystals (regarding radiopurity) for future CRESST runs possible
- Radiopurity of investigated TUM-grown crystals better than radiopurity of investigated commercial crystals (at least a factor 2 lower activities)

Outlook

- Setup ready for further measurements (e.g. crystal grown out of recrystallized material only)
- Improvement of setup possible (e.g. additional lead shielding)

Conclusion and Outlook

Thank you for your attention.

Conclusion and Outlook

backup slides

Schematic of CRESST-II Detector Module

- Energy deposition in the CaWO₄ crystal produces phonons (heat) and photons (light)
- Simultaneous read-out of light and phonon channel
 - active background discrimination on an event-by-event basis possible

Normal Conducting to Superconducting State Transition

Active Background Discrimination

- Search for nuclear recoils of WIMPs
- ${
 m e^-/\gamma}$ Region of interest (ROI): nuclear recoil bands < 40 keV and > E_{threshold}
 - Radiopurity of CaWO₄ crystals important because of leakage from e^-/γ -band into ROI

Schematic of Data Acquisition System

Typical Pulses

Background Spectra of CaWO₄ Crystal

Reduction of background: integral count rate in energy range from 170 keV_{ee} to 3000 keV_{ee}

 $\begin{array}{c} \text{blue spectrum} \xrightarrow{\quad \text{factor} \, \sim \, 30} \quad \text{red spectrum} \xrightarrow{\quad \text{factor} \, \sim \, 5} \quad \text{green spectrum} \ (0.05 \, \text{Hz}) \end{array}$

Uranium-Radium Decay Series

Uranium-Actinium Decay Series

Thorium Decay Series

Identification of Alpha Events for the Alpha Spectra

Identification of alpha events for the alpha spectrum of each CaWO₄ crystal:

- Double Gaussian fit of shape indicator histogram (for each 310 keV_{ee} step from 750 keV_{ee} to 2300 keV_{ee})
- ② Acceptance region for alphas: leakage of gammas into alphas $< 0.5\,\%$
 - Efficiency correction due to acceptance region

Alpha Spectrum - TUM-Grown Crystal "Karl II"

Alpha Spectrum - Commercial Crystal "Boris"

