Low-Background Scintillation Spectroscopy for the Investigation of the Radiopurity of CaWO₄ Crystals Raphael Kneißl IMPRS Workshop March 16th, 2015 ## The CRESST-II Experiment - Direct dark matter search experiment - Search for nuclear recoils of Weakly Interacting Massive Particles via elastic WIMP-nucleon scattering (expected WIMP signals: nuclear recoils with energies < 40 keV) - Scintillating CaWO₄ single crystals as target material ($\sim 300 \, g$ each) - In current run (CRESST-II phase 2) 4 TUM-grown crystals installed for the first time - Radiopurity of CaWO₄ crystals limits sensitivity of CRESST-II ## Radiopurity of CaWO₄ Crystals in Low-Energy Regime - Large fraction of background in low-energy regime originates from intrinsic contamination of the CaWO₄ crystals - Relevant intrinsic decays in low-energy regime: 227 Ac ($Q_{\beta}=44.8$ keV, $T_{1/2}=21.8$ y) 234 Th ($Q_{\beta}=273$ keV, $T_{1/2}=24.1$ d) 179 Ta from cosmogenic activation - Background level (1-40 keV): - Commercial crystals used in CRESST-II: 6-30/[kg keV day] - TUM-grown crystal TUM-40: 3.44/[kg keV day] ## Low-Background Scintillation Spectroscopy Setup - Determination of intrinsic radioactive contaminations of CaWO₄ crystals - Feedback for crystal production to improve radiopurity - Preselection of radio-purest crystals for future CRESST runs - Crystal is source and scintillator at the same time - $\longrightarrow \sim$ 100 % detection efficiency for intrinsic alpha and beta decays ## **Energy Calibration** - Energy calibration before and after each measurement with various gamma sources (energies of gamma lines between $\sim 60 \, \text{keV}$ and $\sim 2600 \, \text{keV}$) - Data points well fitted by power function - \bullet Energy resolution (FWHM) at 511 keV: $\sim14\,\%$ ## Pulse Shapes of Alpha and Gamma Particles - Pulse shapes of averaged and normalized alpha and gamma pulses - Irradiation with sources: - $\bullet~^{241} \text{Am}$ alpha particles with $\lesssim 5.6\,\text{MeV}$ - ²²Na gamma rays with 1275 keV - Different decay times of alpha and gamma events - \longrightarrow pulse shape discrimination possible - → discrimination between alphas (internal) and gammas (internal and external) ## Histogram of Energy vs. Shape Indicator Shape indicator: $$\mathsf{SI} = \frac{\sum_{k} f(t_k) \cdot P(t_k)}{\sum_{k} f(t_k)}$$ $f(t_k)$: pulse amplitude at time t_k Weight function: $$P(t) = \frac{f_{\alpha}(t) - f_{\gamma}(t)}{f_{\alpha}(t) + f_{\gamma}(t)}$$ Various populations in histogram due to different event types ## Coincidence Search Search for coincidence between decay of a mother isotope and a following short-lived daughter isotope • ²³⁸U chain: ²¹⁴Bi $$\xrightarrow{T_{1/2} = 19.9 \text{ min}} \xrightarrow{214} Po \xrightarrow{T_{1/2} = 164 \, \mu s} \xrightarrow{210} Pb$$ • ²³⁵U chain: ²¹⁹Rn $$\xrightarrow{T_{1/2} = 3.96 \text{ s}} \xrightarrow{Q_{\alpha} = 6.9 \text{ MeV}} \xrightarrow{215} Po \xrightarrow{T_{1/2} = 1.78 \text{ ms}} \xrightarrow{211} Pb$$ • ²³²Th chain: ²²⁰Rn $$\xrightarrow{T_{1/2} = 55.6 \text{ s}} \xrightarrow{Q_{\alpha} = 6.4 \text{ MeV}} \xrightarrow{216} Po \xrightarrow{T_{1/2} = 145 \text{ ms}} \xrightarrow{212} Pb$$ \longrightarrow determination of ²²⁶Ra, ²²⁷Ac, and ²²⁸Th activities possible ## 219 Rn \longrightarrow 215 Po \longrightarrow 211 Pb Coincidence - Energy spectrum of ²¹⁹Rn and ²¹⁵Po decay - Total measurement time: \sim 42 d - Number of found coincidences (accidental coincidences): 214 Bi \rightarrow 214 Po \rightarrow 210 Pb: 65 (0) 219 Rn \rightarrow 215 Po \rightarrow 211 Pb: 120 (1) 220 Rn \rightarrow 216 Po \rightarrow 212 Pb: 48 (10) # Alpha Spectrum - TUM-Grown Crystal - TUM-grown crystal "Karl II" - Energy range from 750 keV_{ee} to 2300 keV_{ee} - Determination of ²³⁸U and ²³⁰Th activities from peaks of the spectrum - Total alpha activity from integral over spectrum - Alpha spectra similar for all investigated TUM-grown crystals ## Alpha Spectrum - Commercial Crystal from Ukraine - Commercial crystal "Boris" - Energy range from 750 keV $_{ee}$ to 2300 keV $_{ee}$ - Determination of ²³⁸U and ²¹⁰Pb activities from peaks of the spectrum - Total alpha activity from integral over spectrum ## Alpha Spectrum - Commercial Crystal from Russia - Commercial crystal "Sabine" - Energy range from 750 keV $_{ee}$ to 2300 keV $_{ee}$ - No activity determination of specific isotopes from spectrum possible - Total alpha activity from integral over spectrum ## Activities of TUM-Grown Crystals #### TUM-grown crystals | | Jakob II | LGS | Ernst | Karl II | |--|---------------------------------|--------------------------------|---------------------------------|-----------------------------------| | | activity [mBq/kg] | | | | | total alpha activity $(750-2300 \text{keV}_{ee})$ | 3.75 ± 0.92 | 5.77 ± 0.77 | 5.45 ± 0.38 | 6.14 ± 0.93 | | ²³⁸ U | 0.53 ± 0.10 | 1.42 ± 0.24 | 1.41 ± 0.18 | 1.98 ± 0.29 | | ²³⁰ Th | 1.03 ± 0.20 | $\boldsymbol{0.95 \pm 0.40}$ | $\boldsymbol{0.70 \pm 0.31}$ | $\boldsymbol{0.94 \pm 0.48}$ | | ²²⁶ Ra | $0.055{}^{+0.019}_{-0.016}$ | $0.196{}^{+ 0.021}_{- 0.019}$ | $0.053 {}^{+ 0.019}_{- 0.016}$ | $0.088 {}^{+ 0.018}_{- 0.016}$ | | ²²⁷ Ac | $0.143 {}^{+ 0.017}_{- 0.015}$ | $0.117{}^{+ 0.011}_{- 0.010}$ | $0.111{}^{+ 0.015}_{- 0.013}$ | $0.143 {}^{+\ 0.014}_{-\ 0.013}$ | | ²²⁸ Th | < 0.015 | $0.028 {}^{+ 0.008}_{- 0.007}$ | < 0.020 | $0.038^{+0.012}_{-0.010}$ | | raw material supplier | AA^1 | AA^1 | MV^2 | MV^2 | | growth number | 1 | 6 | 1 | 2 | ¹ Alfa Aesar; ² MV Laboratories ## Feedback for Crystal Production Process - Radiopurity of crystals depends on raw materials - → importance of raw material preselection - Radiopurity improves with decreasing growth number - crystal growth is purification process (strongly depending on element) - ---- regularly remove residual melt or try recrystallisation ## Activities of Commercial Crystals #### Commercial crystals | | Boris | Sabine | | |--|-----------------------------|---------------------------|--| | | activity [mBq/kg] | | | | total alpha activity (750-2300 keV _{ee}) | 1293 ± 6 | 14.85 ± 0.76 | | | ²³⁸ U | 8.22 ± 0.47 | _ | | | ²²⁶ Ra | $4.830^{+0.149}_{-0.145}$ | $0.722^{+0.052}_{-0.049}$ | | | ²²⁷ Ac | $0.360{}^{+0.033}_{-0.030}$ | $1.181^{+0.042}_{-0.040}$ | | | ²²⁸ Th | $0.099^{+0.027}_{-0.023}$ | $0.351^{+0.029}_{-0.027}$ | | | ²¹⁰ Pb | 1269 ± 4 | _ | | ### Conclusion and Outlook #### Conclusion - Activities determined down to the μ Bq/kg level - Important feedback for crystal production process - Preselection of CaWO₄ crystals (regarding radiopurity) for future CRESST runs possible - Radiopurity of investigated TUM-grown crystals better than radiopurity of investigated commercial crystals (at least a factor 2 lower activities) #### Outlook - Setup ready for further measurements (e.g. crystal grown out of recrystallized material only) - Improvement of setup possible (e.g. additional lead shielding) **Conclusion and Outlook** Thank you for your attention. **Conclusion and Outlook** backup slides ### Schematic of CRESST-II Detector Module - Energy deposition in the CaWO₄ crystal produces phonons (heat) and photons (light) - Simultaneous read-out of light and phonon channel - active background discrimination on an event-by-event basis possible ## Normal Conducting to Superconducting State Transition ## Active Background Discrimination - Search for nuclear recoils of WIMPs - ${ m e^-/\gamma}$ Region of interest (ROI): nuclear recoil bands < 40 keV and > E_{threshold} - Radiopurity of CaWO₄ crystals important because of leakage from e^-/γ -band into ROI ## Schematic of Data Acquisition System # Typical Pulses ## Background Spectra of CaWO₄ Crystal Reduction of background: integral count rate in energy range from 170 keV_{ee} to 3000 keV_{ee} $\begin{array}{c} \text{blue spectrum} \xrightarrow{\quad \text{factor} \, \sim \, 30} \quad \text{red spectrum} \xrightarrow{\quad \text{factor} \, \sim \, 5} \quad \text{green spectrum} \ (0.05 \, \text{Hz}) \end{array}$ ## Uranium-Radium Decay Series ## Uranium-Actinium Decay Series ## Thorium Decay Series ## Identification of Alpha Events for the Alpha Spectra Identification of alpha events for the alpha spectrum of each CaWO₄ crystal: - Double Gaussian fit of shape indicator histogram (for each 310 keV_{ee} step from 750 keV_{ee} to 2300 keV_{ee}) - ② Acceptance region for alphas: leakage of gammas into alphas $< 0.5\,\%$ - Efficiency correction due to acceptance region # Alpha Spectrum - TUM-Grown Crystal "Karl II" ## Alpha Spectrum - Commercial Crystal "Boris"