Mean-Field Solutions as Many-Body States in Quantum Field Theory

Artem Averin

advisor Gia Dvali, LMU Munich

March 16, 2015

I Motivation

mean-field approach: the system is described through a classical field

usual intuition: if the system is big, the mean-field approach is a good approximation as quantum effects are negligible

examples: electric field of a capacitor (field strength $F_{\mu\nu}$), gravitational field of planets, black holes (metric $g_{\mu\nu}$), ...

I Motivation

mean-field approach: the system is described through a classical field

usual intuition: if the system is big, the mean-field approach is a good approximation as quantum effects are negligible

examples: electric field of a capacitor (field strength $F_{\mu\nu}$), gravitational field of planets, black holes (metric $g_{\mu\nu}$), ...

Dvali-Gomez (2012)

Dvali-Gomez (2012)

for black holes this intuition is wrong, mean-field description fails

ignorance of this fact leads exactly to the known paradoxes of black hole physics

macro-quantum behavior caused by quantum criticality

quantum criticality and macro-quantum behavior is already present in theories of non-relativistic, self-interacting Bose fields

Bose-field $\Psi(x,t)$ on a one-dimensional ring of radius R with $g>0, (\hbar=2m=R=1)$

$$H = \int dx \Psi^{\dagger}(-\Delta)\Psi - \frac{g}{2} \int dx \Psi^{\dagger}\Psi^{\dagger}\Psi\Psi$$

$$\int dx |\Psi|^2 = N$$

effective coupling $|\gamma|=rac{gN}{2\pi}$

Bose-field $\Psi(x,t)$ on a one-dimensional ring of radius R with g>0, $(\hbar=2m=R=1)$

$$H = \int dx \Psi^{\dagger}(-\Delta)\Psi - \frac{g}{2} \int dx \Psi^{\dagger}\Psi^{\dagger}\Psi\Psi$$

$$\int dx |\Psi|^2 = N$$

effective coupling $|\gamma|=rac{gN}{2\pi}$

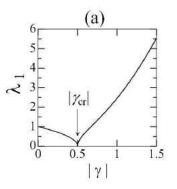
weak-coupling regime $|\gamma|<\frac{1}{2}$: ground-state is a homogeneous condensate

Bose-field $\Psi(x,t)$ on a one-dimensional ring of radius R with $g>0, (\hbar=2m=R=1)$

$$H = \int dx \Psi^{\dagger}(-\Delta)\Psi - \frac{g}{2} \int dx \Psi^{\dagger}\Psi^{\dagger}\Psi\Psi$$

$$\int dx |\Psi|^2 = N$$

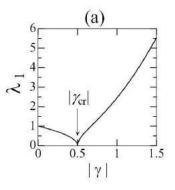
effective coupling $|\gamma|=rac{gN}{2\pi}$


weak-coupling regime $|\gamma|<\frac{1}{2}$: ground-state is a homogeneous condensate

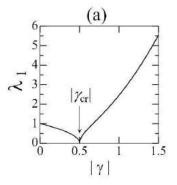
strong-coupling regime $|\gamma|>\frac{1}{2}$: ground-state is a solitonic condensate

Lowest excitation energy of the ground-state

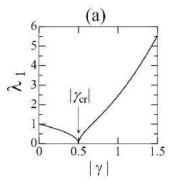
Lowest excitation energy of the ground-state



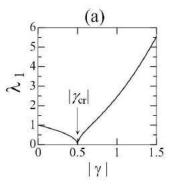
quantum critical point $|\gamma|=\frac{1}{2}$: Quantum Phase Transition from homogeneous to solitonic ground-state


appearance of light excitations

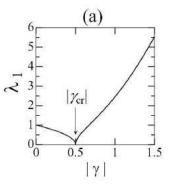
breakdown of mean-field description



Think of the homogeneous/solitonic condensate as being composed of homogeneous/solitonic corpuscles.



Think of the homogeneous/solitonic condensate as being composed of homogeneous/solitonic corpuscles.


In the weak-coupling regime the homogeneous corpuscles are weakly-coupled whereas their coupling is strong in the strong-coupling regime.

Solitonic corpuscles are weakly-coupled in the strong-coupling regime, while their coupling is strong in the weak-coupling regime.

Understand the critical point and the phenomenon of macro-quantumness as the non-existence of weakly-coupled degrees of freedom.

Find a proper framework to formulate and check these proposals!

IV Working out the idea

IV Working out the idea

$$\Psi = \Phi + \varphi$$

interaction-strength of corpuscles condensed in $\Phi=$ coupling of Φ to quantum fluctuations

literature in condensed matter physics: conditions for emergence of strongly-coupled corpuscles

check proposals for homogeneous and solitonic mean-fields for appearance of strongly-coupled corpuscles

verify conditions

homogeneous mean-fields:

strongly-coupled in strong-coupling regime $|\gamma|>\frac{1}{2}$

strong-coupling conditions not fulfilled

solitonic mean-fields:

no stationary solitonic mean-field solutions in the weak-coupling regime $|\gamma|<\frac{1}{2}$

Questions?

Thank you!