A. Kiryunin

Noise Performance of the HEC at SLHC (very preliminary estimates)

Meeting at MPI on "HEC cold electronics" 16-th of April, 2007

Content

- Introduction
- HEC structure
- Shaping functions
- Noise versus peaking time
- Next steps

Introduction

- Two sources of noise in calorimeter channels:
 - electronics
 - pileup of minimum bias events, happened in the neighbouring bunch crossings
- Different behaviour of noise as a function of the peaking time:
 - electronic noise σ_{EL} decreasing
 - pileup noise σ_{PU} increasing
- Current design of HEC electronics is optimised for LHC luminosities:
 - $-\log L = 10^{33} \text{ cm}^{-2} \text{s}^{-1}$
 - high $L = 10^{34} \mathrm{~cm^{-2} s^{-1}}$
- Super LHC luminosity ($L = 10^{35} \text{ cm}^{-2}\text{s}^{-1}$) requires new electronics
- This talk: first attempt to estimate total noise in HEC channels at SLHC
- Old programmes (used for HEC optimisation in 1997-1999) are applied for present calculations

Channels in the HEC

- Hadronic end-cap calorimeter:
 - 2 front and 2 rear wheels
 - 32 modules in a wheel
- 5632 channels in total
- 51 different types of channels (azimuthal symmetry)
 - 14 pseudorapidity bins
 - 4 longitudinal layers
 - detector capacitance
 - cable length
 - number of preamplifiers

1 5 5	P1a	P1	P3a	P3 DÉa	P5a	P5	P7a
1.55	P1b	P3a	P3b	PSa	P5b	P7a	Р7Ь
	P3a	P3b	P5a	P5b	P7a	Р7ь	
1.65	P3b	P5a	P5b	P7a	P7b		P9
		P5b	D7	P7b		P9	
1.75	P5	D7		P9	P9		P11
			PO		D11	P11	
1.85		P9		P11		P13	P 13
1.95	P9		P11		P 13		P15
		P11	D13	P13	P15	P15	
2.05	P11	P13		P15		P17	P17
2.15	P13		P15	P17	P 17		P 19
2.25	P15		P17		P 19	P19	
2.35	P17	P17	P 19	PI9		P21	P21
2.45	P 19	P 19		P21	P21		
26	P21	P21	P21		P22	P22	P22
2.0			P22	P22			P23
2.8	P22	P22	P23	P23	P23	P23	P24
3.0	P23	P 23				P24	
	P24	3					

Layer 1 Layer 2

Layer 3 Layer 4

Shaping Functions

- FORTRAN-based programme from L. Kurchaninov and D. Salihagić
- Shaping function f_{SH} :
 - shaping time t_{SH}
 - detector capacitance C_D
- Peaking time t_P as a rise time of a shaping function from 5 to 100 %
- Set of shaping functions
 - 51 HEC channels
 - 19 values of the peaking time: from 20 to 110 ns

Electronic Noise

- Code from L. Kurchaninov
- Equivalent noise current (*ENI*)
 - shaping time t_{SH}
 - detector capacitance C_D
 - cable length
 - number of preamplifiers
- Electronic noise at the visible energy scale

$$\sigma_{EL} = ENI/C_0,$$

where $C_0=7135~\mathrm{nA/GeV}$

Pileup Noise

- 2871 minimum bias events, fully simulated with the version 96_12 (calorimeter TDRs)
- Pileup of N_{MB} in average (Poisson distributed) minimum bias events per bunch crossing ($N_{MB} = 230$ at SLHC)
- R.M.S. of distribution of visible energy in one channel in one bunch crossing σ_{BX} — pileup noise for the infinitely fast detector ($t_P=0$)
- "Shaping integral": $S_{int} = \sqrt{\sum_{25ns} f_{SH}^2}$
- Pileup noise result of convolution with a shaping function:

Noise versus Peaking Time

Noise versus Peaking time

Minimal total noise

Noise versus Peaking time

Peaking time corresponding to minimal total noise

Next Steps?

- 1. Old model of HEC electronics chain \Rightarrow Complete model (L. Kurchaninov, ATLAS HEC Note-109, 2001)
 - calculations with MCAD under Windows
 - different peaking times
 - other types of preamplifiers, shapers, etc.
- 2. Measurements in one time sampling \Rightarrow Measurements in five time samplings and optimal weighting
 - other schemes (not five samplings, not every sampling, etc.)
- 3. Old simulations of minimum bias events \Rightarrow Latest simulations
 - another structure of HEC channels (longitudinal segmentation, transverse granularity) ?

