Precision cosmology (dark matter and neutrino mass limits)

Yvonne Y. Y. Wong Max-Planck-Institut für Physik, München

July 4, 2008

What are the components and how much? What is the geometry? The initial conditions? The eventual fate? ... Precision cosmology

Tool 1: Cosmic microwave background...

Mather et al., 1994

• FIRAS on COBE measured **Planck spectrum**, with temperature:

 $T_{\rm CMB} = 2.725 \pm 0.001 \,\rm K$

- T_{CMB} fixes:
 - Photon energy density.
 - Relic neutrino number density per flavour:

$$n_{v} = 112 \,\mathrm{cm}^{-3}$$

• Temperature fluctuations from acoustic oscillations of the photon-baryon fluid frozen on the last scattering surface.

Tool 2: Large-scale structure...

Matter distribution (luminous and dark) Virgo collaboration, 1996

Galaxy clustering

300 h⁻¹ Mpc

Cluster abundance

Gravitational lensing

Intergalactic hydrogen clumps; Lyman-α

1 h⁻¹ Mpc

Tool 3: Standard candles...

Type la supernova (SNIa).

• Hubble diagram of **SNIa** provided the first evidence for a negative pressure fluid, the "**dark energy**".

The concordance model...

- The simplest model consistent with all present data:
- \rightarrow Flat geometry.
- \rightarrow 74% Negative pressure fluid.
- \rightarrow Dark matter is cold.
- → Initial conditions consistent with predictions of inflation.

Table 5: Λ CDM Model: Joint Likelihoods These values are calculated using the $N_{side} = 8$ likelihood code with $A_{PS} = 0.017$

	WMAP	WMAP	WMAP+ACBAR	WMAP +
	Only	+CBI+VSA	+BOOMERanG	2dFGRS
$100\Omega_b h^2$	$2.230^{+0.075}_{-0.073}$	2.208 ± 0.071	2.232 ± 0.074	$2.223^{+0.069}_{-0.068}$
$\Omega_m h^2$	$0.1265^{+0.0081}_{-0.0080}$	$0.1233^{+0.0075}_{-0.0074}$	0.1260 ± 0.0081	0.1261 ± 0.0050
h	0.735 ± 0.032	0.742 ± 0.031	$0.739^{+0.033}_{-0.032}$	$0.733^{+0.020}_{-0.021}$
τ	$0.088^{+0.029}_{-0.030}$	0.087 ± 0.029	$0.088^{+0.031}_{-0.032}$	0.083 ± 0.028
n_s	0.951 ± 0.016	0.947 ± 0.015	0.951 ± 0.016	0.948 ± 0.015
σ_8	0.742 ± 0.051	$0.721^{+0.047}_{-0.046}$	$0.739^{+0.050}_{-0.051}$	0.737 ± 0.036
Ω_m	0.237 ± 0.034	0.226 ± 0.031	$0.233^{+0.033}_{-0.034}$	0.236 ± 0.020

Table 5: ACDM Model: Joint Likelihoods These values are calculated using the $N_{side} = 8$ likelihood code with $A_{PS} = 0.017$

	WMAP	WMAP	WMAP+ACBAR	WMAP +
	Only	+CBI+VSA	+BOOMERanG	2dFGRS
$100\Omega_b h^2$	$2.230^{+0.075}_{-0.073}$	2.208 ± 0.071	2.232 ± 0.074	$2.223^{+0.069}_{-0.068}$
$\Omega_m h^2$	$0.1265^{+0.0081}_{-0.0080}$	$0.1233^{+0.0075}_{-0.0074}$	0.1260 ± 0.0081	0.1261 ± 0.0050
h	0.735 ± 0.032	0.742 ± 0.031	$0.739^{+0.033}_{-0.032}$	$0.733^{+0.020}_{-0.021}$
τ	$0.088^{+0.029}_{-0.030}$	0.087 ± 0.029	$0.088^{+0.031}_{-0.032}$	0.083 ± 0.028
n_s	0.951 ± 0.016	0.947 ± 0.015	0.951 ± 0.016	0.948 ± 0.015
σ_8	0.742 ± 0.051	$0.721_{-0.046}^{+0.047}$	$0.739^{+0.050}_{-0.051}$	0.737 ± 0.036
Ω_m	0.237 ± 0.034	0.226 ± 0.031	$0.233\substack{+0.033\\-0.034}$	0.236 ± 0.020

• From observations to parameter constraints.

• Neutrino masses.

• (Future probes.)

1. From observations to parameter constraints...

Sky

Measurement

Time-ordered data

Map making

Maps

Foreground removal

The analysis pipeline

http://space.mit.edu/~tegmark

Clean map

Power spectrum estimation

Anisotropy spectrum

Model testing

Cosmological parameters

Foreground removal...

- Subtract diffuse galactic emission.
- Remove known point sources.
- **Discard** regions of high contamination.

Hinshaw et al. (WMAP3), 2006

Foreground removal...

- Subtract diffuse galactic emission.
- Remove known point sources.
- **Discard** regions of high contamination.

The cleaned, "publicity" map.

Masks: regions not used in cosmological analyses.

Hinshaw et al. (WMAP3), 2006

Power spectrum estimation...

- Easy to compare with theory:
 - Calcs in Fourier space.
 - C₁ completely describe
 Gaussian random
 fluctuations.
- Black error bars = instrumental noise.
- Red band = cosmic variance (sampling error):

Power spectrum from theory...

Initial conditions $P_{ini}(k)$ = Initial perturbation power spectrum **Projection** $j_i(x) =$ spherical Bessel function

 $C_{l} \propto \int \frac{dk}{k} P_{\text{ini}}(k) \left[\int d\eta T_{\gamma}(k,\eta) j_{l} [k(\eta_{0}-\eta)] \right]^{2}$

Transfer function, T(k) Depends on energy content, geometry, interactions, velocity dispersions.

k = Wavenumber $\eta = Time$

Power spectrum from theory...

Initial conditions $P_{ini}(k)$ = Initial perturbation power spectrum **Projection** $j_i(x) =$ spherical Bessel function

Transfer function, T(k) Depends on energy content, geometry, interactions, velocity dispersions.

 $C_l \propto \int \frac{dk}{k} \left[P_{\text{ini}}(k) \int d\eta T_{\gamma}(k,\eta) j_l [k(\eta_0 - \eta)] \right]^2$

k = Wavenumber η = Time

Initial perturbations...

• Leading theory = Inflation.

• Scalar field φ driven exponential expansion:

$$a(t) \sim \exp(H t)$$

 Quantum fluctuations of φ seed perturbations.

- Inflation generates two types of perturbations on the space-time metric:
 - Scalar \leftrightarrow matter density perturbations.
 - Tensor \leftrightarrow primordial gravity waves (can affect CMB).

• Are the perturbations:

Adiabatic?
$$\frac{1}{4} \frac{\delta \rho_{\gamma}}{\rho_{\gamma}} = \frac{1}{4} \frac{\delta \rho_{\nu}}{\rho_{\nu}} = \frac{1}{3} \frac{\delta \rho_{dm}}{\rho_{dm}} = \frac{1}{3} \frac{\delta \rho_{b}}{\rho_{b}}$$

Generic prediction of single-field inflation.

- Isocurvature?
$$\sum_i \delta \rho_i = 0$$
 Ruled out.

- Mixed ?
$$\frac{1}{4} \frac{\delta \rho_{\gamma}}{\rho_{\gamma}} \neq \frac{1}{4} \frac{\delta \rho_{\nu}}{\rho_{\nu}} \neq \frac{1}{3} \frac{\delta \rho_{dm}}{\rho_{dm}} \neq \frac{1}{3} \frac{\delta \rho_{b}}{\rho_{b}}, \quad \sum_{i} \delta \rho_{i} \neq 0$$

Can be realised in multi-field inflation models, cosmic strings, etc.

No evidence for mixed perturbations, but up to ~10% isocurvature is allowed.

Power spectrum from theory...

Initial conditions $P_{ini}(k)$ = Initial perturbation power spectrum **Projection** $j_i(x) =$ spherical Bessel function

Transfer function, T(k) Depends on energy content, geometry, interactions, velocity dispersions.

 $C_l \propto \int \frac{dk}{k} \left[P_{\text{ini}}(k) \int d\eta T_{\gamma}(k,\eta) j_l [k(\eta_0 - \eta)] \right]^2$

k = Wavenumber η = Time

Power spectrum from theory...

Initial conditions $P_{ini}(k)$ = Initial perturbation power spectrum **Projection** $j_i(x)$ = spherical Bessel function

Transfer function, T(k) Depends on energy content, geometry, interactions, velocity dispersions.

 $C_{l} \propto \int \frac{dk}{k} P_{ini}(k) \left[\int d\eta T_{\gamma}(k,\eta) j_{l}[k(\eta_{0}-\eta)] \right]^{2}$

k = Wavenumber η = Time

Transfer functions...

• Describe evolution of density perturbations in various components:

Boltzmann equation to track density pertrubations

Friedmann equation of an expanding background

$$\frac{Df}{d\tau} = \frac{\partial f}{\partial \tau} + \frac{dx^i}{d\tau} \frac{\partial f}{\partial x^i} + \frac{dq}{d\tau} \frac{\partial f}{\partial q} + \frac{dn_i}{d\tau} \frac{\partial f}{\partial n_i} = \left(\frac{\partial f}{\partial \tau}\right)_C \,,$$

$$\begin{pmatrix} \frac{\dot{a}}{a} \end{pmatrix}^2 = \frac{8\pi}{3} G a^2 \bar{\rho} - \kappa ,$$

$$\frac{d}{d\tau} \begin{pmatrix} \frac{\dot{a}}{a} \end{pmatrix} = -\frac{4\pi}{3} G a^2 (\bar{\rho} + 3\bar{P}) ,$$

General relativity

Perturbed Friedmann-**Robertson-Walker metric**

 $T^0_{\ 0} \ = \ - (\bar{\rho} + \delta \rho) \, ,$

 $T^{i}_{\ j} = (\bar{P} + \delta P)\delta^{i}_{\ j} +$

$$ds^{2} = a^{2}(\tau) \left\{ -(1+2\psi)d\tau^{2} + (1-2\phi)dx^{i}dx_{i} \right\}$$

1st order perturbed Einstein equations

Perturbed energy-
momentum tensor

$$\begin{aligned} k^{2}\phi + 3\frac{\dot{a}}{a}\left(\dot{\phi} + \frac{\dot{a}}{a}\psi\right) &= 4\pi Ga^{2}\delta T^{0}_{0}(\operatorname{Con}), \\ k^{2}\left(\dot{\phi} + \frac{\dot{a}}{a}\psi\right) &= 4\pi Ga^{2}(\bar{\rho} + \bar{P})\theta(\operatorname{Con}), \\ k^{2}\left(\dot{\phi} + \frac{\dot{a}}{a}\psi\right) &= 4\pi Ga^{2}(\bar{\rho} + \bar{P})\theta(\operatorname{Con}), \\ k^{2}\left(\dot{\phi} + \frac{\dot{a}}{a}\psi\right) &= 4\pi Ga^{2}(\bar{\rho} + \bar{P})\theta(\operatorname{Con}), \\ T^{0}_{i} &= (\bar{\rho} + \bar{P})v_{i} = -T^{i}_{0}, \\ T^{i}_{j} &= (\bar{P} + \delta P)\delta^{i}_{j} + \Sigma^{i}_{j}, \qquad \Sigma^{i}_{i} = 0, \end{aligned}$$

e.g., Ma & Bertschinger, 1995

- Evolution of perturbations depends on
 - Background evolution.
 - Radiation, matter, or dark energy domination?
 - Velocity dispersion.
 - Cold versus hot dark matter.
 - Interactions.
 - Baryons versus dark matter.

The observables...

$$C_l \propto \int \frac{dk}{k} P_{\text{ini}}(k) \left[\int d\eta T_{\gamma}(k,\eta) j_l[k(\eta_0 - \eta)] \right]^2$$

$$P_{m}(k, t_{0}) = T_{m}^{2}(k, t_{0}) P_{ini}(k)$$

Model testing and parameter inference...

• The simplest model that fits all present data:

$$P_{\text{vanilla}} = (\Omega_c h^2, \Omega_b h^2, \Omega_\Lambda, n_s, A_s, \tau) \qquad \sum_i \Omega_i = 1$$

Table 3: Goodness of Fit, $\Delta \chi^2_{eff} \equiv -2 \ln \mathcal{L}$, for WMAP data only relative to a Power-Law ACDM model. $\Delta \chi^2_{eff} > 0$ is a worse fit to the data.

	Model	$-\Delta(2\ln\mathcal{L})$	N_{par}]
M1	Scale Invariant Fluctuations $(n_s = 1)$	6	5	
M2	No Reionization $(\tau = 0)$	7.4	5	
M3	No Dark Matter ($\Omega_c = 0, \Omega_{\Lambda} \neq 0$)	248	6	
M4	No Cosmological Constant ($\Omega_c \neq 0, \Omega_{\Lambda} = 0$)	0	6	
M5	Power Law ΛCDM	0	6	1
M6	Quintessence $(w \neq -1)$	0	7	1
M7	Massive Neutrino $(m_{\nu} > 0)$	-1	7	
M8	Tensor Modes $(r > 0)$	0	7	-
M9	Running Spectral Index $(dn_s/d\ln k \neq 0)$	-4	7	+
M10	Non-flat Universe $(\Omega_k \neq 0)$	-2	7	
M11	Running Spectral Index & Tensor Modes	-4	8	
M12	Sharp cutoff	-1	7	
M13	Binned $\Delta^2_{\mathcal{R}}(k)$	-22	20	

"Vanilla" - = better fit + = worse fit

$$P_{\text{vanilla}} = (\Omega_c h^2, \Omega_b h^2, \Omega_\Lambda, n_s, A_s, \tau) \qquad \sum_i \Omega_i = 1$$

		Model	$-\Delta(2\ln\mathcal{L})$	N_{par}	
The simplest	. [Scale Invariant Fluctuations $(n_s = 1)$	6	5	
inflation models		No Reionization $(\tau = 0)$	7.4	5	
predict $n_s < 1$.		No Dark Matter ($\Omega_c = 0, \Omega_{\Lambda} \neq 0$)	248	6	
	M4	No Cosmological Constant ($\Omega_c \neq 0, \Omega_{\Lambda} = 0$)	0	6	
1	M5	Power Law ΛCDM	0	6	"Vanilla"
]	M6	Quintessence $(w \neq -1)$	0	7	
1	M7	Massive Neutrino $(m_{\nu} > 0)$	-1	7	h a than Ct
]	M8	Tensor Modes $(r > 0)$	0	7	- = better fit
1	M9	Running Spectral Index $(dn_s/d\ln k \neq 0)$	-4	7	+ = worse fit
1	M10	Non-flat Universe $(\Omega_k \neq 0)$	-2	7	
1	M11	Running Spectral Index & Tensor Modes	-4	8	
1	M12	Sharp cutoff	-1	7	
1	M13	Binned $\Delta^2_{\mathcal{R}}(k)$	-22	20	

$$P_{\text{vanilla}} = (\Omega_c h^2, \Omega_b h^2, \Omega_\Lambda, n_s, A_s, \tau) \qquad \sum_i \Omega_i = 1$$

Table 5	Goodn	ess of Fit, $\Delta \chi^2_{eff} \equiv -2 \ln \mathcal{L}$, for WMAP data	only relative	to a Po	ower-Law
ACDM n	nodel. /	$\Delta \chi^2_{eff} > 0$ is a worse fit to the data.			
		Model	$-\Delta(2\ln\mathcal{L})$	N_{par}]
	M1	Scale Invariant Fluctuations $(n_s = 1)$	6	5	
Astrophysic	s	No Reionization $(\tau = 0)$	7.4	5	
	MЗ	No Dark Matter ($\Omega_c = 0, \Omega_{\Lambda} \neq 0$)	248	6	
	M4	No Cosmological Constant $(\Omega_c \neq 0, \Omega_{\Lambda} = 0)$	0	6	
	M5	Power Law ΛCDM	0	6	"Vanilla"
	M6	Quintessence $(w \neq -1)$	0	7	
	M7	Massive Neutrino $(m_{\nu} > 0)$	-1	7	
	M8	Tensor Modes $(r > 0)$	0	7	- = better fit
	M8 M9	Tensor Modes $(r > 0)$ Running Spectral Index $(dn_s/d \ln k \neq 0)$	$0 \\ -4$	7 7	 - = better fit + = worse fit
	M8 M9 M10	Tensor Modes $(r > 0)$ Running Spectral Index $(dn_s/d \ln k \neq 0)$ Non-flat Universe $(\Omega_k \neq 0)$	$\begin{array}{c} 0 \\ -4 \\ -2 \end{array}$	7 7 7	 = better fit + = worse fit
	M8 M9 M10 M11	Tensor Modes $(r > 0)$ Running Spectral Index $(dn_s/d \ln k \neq 0)$ Non-flat Universe $(\Omega_k \neq 0)$ Running Spectral Index & Tensor Modes	$\begin{array}{c} 0 \\ -4 \\ -2 \\ -4 \end{array}$	7 7 7 8	 = better fit + = worse fit
	M8 M9 M10 M11 M12	Tensor Modes $(r > 0)$ Running Spectral Index $(dn_s/d \ln k \neq 0)$ Non-flat Universe $(\Omega_k \neq 0)$ Running Spectral Index & Tensor Modes Sharp cutoff	$\begin{array}{c} 0 \\ -4 \\ -2 \\ -4 \\ -1 \end{array}$	7 7 8 7	 = better fit + = worse fit

$$P_{\text{vanilla}} = (\Omega_c h^2, \Omega_b h^2, \Omega_\Lambda, n_s, A_s, \tau) \qquad \sum_i \Omega_i = 1$$

		Model	$-\Delta(2\ln\mathcal{L})$	N_{par}	
_	M1	Scale Invariant Fluctuations $(n_s = 1)$	6	5	
Absolute	v	No Reionization $(\tau = 0)$	7.4	5	
necessar		No Dark Matter ($\Omega_c = 0, \Omega_{\Lambda} \neq 0$)	248	6	
necessar	y	No Cosmological Constant $(\Omega_c \neq 0, \Omega_{\Lambda} = 0)$	0	6	
	M5	Power Law ACDM	0	6	"Vanilla"
	M6	Quintessence $(w \neq -1)$	0	7	
	M7	Massive Neutrino $(m_{\nu} > 0)$	-1	7	
	M8	Tensor Modes $(r > 0)$	0	7	- = better fit
	M9	Running Spectral Index $(dn_s/d\ln k \neq 0)$	-4	7	+ = worse fit
	M10	Non-flat Universe $(\Omega_k \neq 0)$	-2	7	
	M11	Running Spectral Index & Tensor Modes	-4	8	
	M12	Sharp cutoff	-1	7	
	M13	Binned $\Delta^2_{\mathcal{R}}(k)$	-22	20	

$$P_{\text{vanilla}} = (\Omega_c h^2, \Omega_b h^2, \Omega_\Lambda, n_s, A_s, \tau) \qquad \sum_i \Omega_i = 1$$

		Model	$-\Delta(2\ln\mathcal{L})$	N_{par}	
CMB only. Incompatible with other probes.		Scale Invariant Fluctuations $(n_s = 1)$	6	5	
		No Reionization $(\tau = 0)$	7.4	5	
		No Dark Matter ($\Omega_c = 0, \Omega_{\Lambda} \neq 0$)	248	6	
		No Cosmological Constant ($\Omega_c \neq 0, \Omega_{\Lambda} = 0$)	0	6	
		Power Law ΛCDM	0	6	
	M6	Quintessence $(w \neq -1)$	0	7	
M7 M8 M9		Massive Neutrino $(m_{\nu} > 0)$	-1	7	
		Tensor Modes $(r > 0)$	0	7	-
		Running Spectral Index $(dn_s/d\ln k \neq 0)$	-4	7	+
	M10	Non-flat Universe $(\Omega_k \neq 0)$	-2	7	
	M11	Running Spectral Index & Tensor Modes	-4	8	
M12		Sharp cutoff	-1	7	
	M13	Binned $\Delta^2_{\mathcal{R}}(k)$	-22	20	

Spergel et al. (WMAP), 2006

"Vanilla"

= better fit

= worse fit

$$P_{\text{vanilla}} = (\Omega_c h^2, \Omega_b h^2, \Omega_\Lambda, n_s, A_s, \tau) \qquad \sum_i \Omega_i = 1$$

		Model	$-\Delta(2\ln\mathcal{L})$	N_{par}	
CMB only.	Scale Invarian	t Fluctuations $(n_s = 1)$	6	5	
Incompatible	No Reio	onization $(\tau = 0)$	7.4	5	
with other	No Dark Ma	tter ($\Omega_c = 0, \Omega_\Lambda \neq 0$)	248	6	
probes.	No Cosmological	Constant $(\Omega_c \neq 0, \Omega_\Lambda = 0)$	0	6	
M5	Power	r Law ΛCDM	0	6	"Vanilla"
M6	Quintes	sence $(w \neq -1)$	0	7	1
Non-flat universe $\Omega_c + \Omega_b = 1.3$ $H_0 = 30 \mathrm{km s^{-1} Mpc^{-1}}$ M12 M12 M12 M12 SI		More complicated in $P_1(k) = A_1 k^{n_1 - 1}$, $F_1(k) = A_1 k^{n_1 - 1}$, $F_2(k) = \Omega_c + \Omega_b = \Omega_c$ $\Omega_v = 0$. $H_0 = 46 \text{ km s}^2$	itial condit $P_2(k) = A_2 k$ 0.88 12 $^{-1} \text{Mpc}^{-1}$	ions k^{n_2-1}	- = better fit + = worse fit
	•	Blanchard, Douspis, R Robinson & Sarkar, 20	owan- 03		WMAP), 2006

$$P_{\text{vanilla}} = (\Omega_c h^2, \Omega_b h^2, \Omega_\Lambda, n_s, A_s, \tau) \qquad \sum_i \Omega_i = 1$$

		Model	$-\Delta(2\ln\mathcal{L})$	N_{par}	
M1		Scale Invariant Fluctuations $(n_s = 1)$	6	5	
	M2	No Reionization $(\tau = 0)$	7.4	5	
	M3	No Dark Matter ($\Omega_c = 0, \Omega_{\Lambda} \neq 0$)	248	6	
	M4	No Cosmological Constant ($\Omega_c \neq 0, \Omega_{\Lambda} = 0$)	0	6	
	M5	Power Law ΛCDM	0	6	
M6 M7		Quintessence $(w \neq -1)$	0	7	
		Massive Neutrino $(m_{\nu} > 0)$	-1	7	
	M8	Tensor Modes $(r > 0)$	0	7	-
+ number of		Running Spectral Index $(dn_s/d\ln k \neq 0)$	-4	7	+
		Non-flat Universe $(\Omega_k \neq 0)$	-2	7	
fraction dark		Running Spectral Index & Tensor Modes	-4	8	
naction, dark		Sharp cutoff	-1	7	
incrys cluster	ny,	Binned $\Delta^2_{\mathcal{R}}(k)$	-22	20	
isocurvature mode,					

etc.

Uncertainties...

1σ errors (all data)

- **Baryon density**, $\Omega_b h^2 = 0.022$
- Dark matter density, $\Omega_c h^2 = 0.105$
- Dark energy density, Ω_{Λ} =0.76
- Scalar spectral index, n_s=0.95

Uncertainties...

- Baryon density, $\Omega_b h^2 = 0.022$ 3
- **Dark matter density**, $\Omega_c h^2 = 0.105$
- **Dark energy density**, Ω_{Λ} =0.76
- Scalar spectral index, n_s=0.95

Provided that:

- Dark energy is exactly a cosmological constant.
- Neutrino mass is exactly zero.
- The Helium-4 fraction is exactly 0.24.
- Tensor contribution is exactly zero.
- There are exactly 3 thermalised neutrino species.
- Space is exactly flat.
- Initial conditions are exactly adiabatic.
- etc.

Uncertainties...

Baryon density, $\Omega_{\rm h}h^2=0.022$ **Dark matter density**, $\Omega_c h^2 = 0.105$ **Dark energy density**, Ω_{Λ} =0.76 • Scalar spectral index, n_s=0.95 Provided that: Dark energy is exactly a cosmological constant. - Neutrino mass is exactly zero. - The Helium-4 fraction is exactly 0.24. - Tensor contribution is exactly zero. - There are exactly 3 thermalised neutrino species. - Space is exactly flat. - Initial conditions are exactly adiabatic. - etc.

The bottom line...

 It's pretty difficult to get away from the concordance \CDM framework, but...

• ... some strong physical assumptions are required to push errors down to the percent level.

2. Neutrino masses

Neutrino dark matter...

• Massive neutrinos ($m_v > 1 \text{ meV}$) are **dark matter**:

$$\Omega_{\nu} h^2 = \sum \frac{m_{\nu}}{93 \, \text{eV}}$$
 = Energy density

min $\sum m_{\nu} \simeq 0.05 \,\text{eV}$ (Neutrino oscillations) max $\sum m_{\nu} \simeq 6 \,\text{eV}$ (Tritium β decay) Small but not negligible! $\Omega_{\nu} \sim 0.1 \,\% \rightarrow 12 \,\%$

Neutrino DM is hot:

Distinctive imprint on the large-scale structure

Detecting neutrino DM = measuring the neutrino mass

The idea...

- Massive neutrinos are hot dark matter.
 - 1 eV neutrino becomes nonrelativistic at $z_{nr} \sim 2000$.
 - Structure formation begins at $z_{eq} \sim 3000$.
- Free-streaming from z_{eq} to z_{nr} suppresses formation of structures on small scales.

N-body simulation, Ma 1996

Limitations...

Limitations...

Limitations...

Nonlinearity Linear perturbation **Cosmic variance** theory applicable when: 105 $\Delta \equiv \frac{k^3 P(k)}{2 \pi^2} \ll 1$ P(k) No. of modes in (k, k+dk): 104 $V \frac{d^{3}k}{(2\pi)^{3}} = V \frac{k^{2}dk}{2\pi^{2}}$ spectrum, **Dimensionless** power spectrum 10³ → Error bars: Linear δP $\frac{V}{P} \propto \frac{1}{\sqrt{V k^2 \delta k}}$ Power 10² $_{\nu}=0.0, \Omega_{\rm m}h^2=0.127$ Survey volume 10 10-2 10^{-1} Wavenumber, k [h Mpc⁻¹]

• Add SNIa...

• Add SNIa...

Schematic only! Not to scale!

• Net effect for the neutrino mass measurement...

Present status...

It's pretty difficult to get away from $\Sigma m_v < 1 - 2 \text{ eV}$ when all available data have been considered.

Reference	Σm_{ν} (95% C.L.)	Model	Data
Ichikawa et al. 2006	< 2.0 eV	m	CMB only
Tegmark et al. 2006	< 0.94 eV	m	CMB, Galaxies
Seljak et al. 2006	< 0.17 eV	m	CMB, Galaxies, Lyman- α , SNIa, HST
Zunckel & Ferreira 200	07 < 2.2 eV	X	CMB, Galaxies
Spergel et al. 2006	< 0.7 eV	m	CMB, Galaxies, SNIa, HST
Goobar et al. 2006	< 0.6 eV	X	CMB, Galaxies, SNIa, BAO, HST
Kristiansen et al. 2006	s < 1.43 eV	m	CMB, Cluster mass function
Hannestad et al. 2007	< 0.65 eV	Х	CMB, Galaxies, SNIa, BAO
and many more.			m=minimal; x=extended

Towards improvement (detection?!?)...

• Larger survey volume for better statistics.

• More reliable probes and predictions at large wavenumbers k.

• New methods to probe large-scale structure to break degeneracies.

3. Future probes...

High-z spectroscopic galaxy surveys Radio arrays

Weak lensing of galaxies/Cosmic shear...

• Distortion (magnification or stretching) of distant galaxy images by **foreground matter**.

Lensed

- **Tomography** = bin galaxies by redshift
 - \rightarrow Probe evolution of density perturbations.

- Past: Weak lensing first detected in 2000.
- Present: There are some ongoing surveys (e.g., CFHTLS).
- Future:

- **Dark Energy Survey** (**DES**) to start in 2012.
- Large Synoptic Survey Telescope (LSST) to start in 2014.

• Planck+LSST sensitivities (based on a 11-parameter model):

1σ sensitivities

_	Neutrino mass, Σm_v	0.05 eV
_	Dark energy density, Ω_{de}	1%
_	Dark matter density, $\Omega_c h^2$	1%
_	Baryon density , $\Omega_{b}h^{2}$	0.6%
_	DE equation of state, w	3%
_	Optical depth to reionisation, τ	8%
_	Scalar spectral index, n _s	1%
_	Number of neutrino species, N_v	2%

Hannestad, Tu & Y³W, 2006

Baryon wiggles...

• Acoustic oscillations of coupled photon-baryon fluid at recombination (cf CMB anisotropies).

• BAO as a standard ruler:

$$r_{\perp} = r_{\parallel} = s_{\text{peak}} \sim 150 \ h^{-1} \,\text{Mpc}$$

- BAO has been detected
 @ z ~ 0.35.
- Planned/proposed spectroscopic surveys, (WFMOS, HETDEX, etc.) will observe @ 2 < z < 4.
- Complementary to SNIa for probing dark energy.

Eisenstein et al. (SDSS), 2005

Even further down the road...

• 21 cm emission lines from Hydrogen spin flip.

• Lensing of 21 cm.

What are the components and how much? What is the geometry? The initial conditions? The eventual fate? ... Precision cosmology