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Energies in Electron Colliders are limited due to synchrotron
radiation and m, very small

m,, =~ 206 -m, — much less synchrotron radiation
—AE occm™*
new frontiers in high energy particle physics
Ecns =1 — 10 TeV
muons are leptons and so are elementary
know the exact collision energy in contrast to hadrons
intensive Neutrino factories

But:  Muons decay after 2.2 ps
— need more advanced Cooling Techniques
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Protons in the range of 2 — 30 GeV
produced by a MW accelerator

impact on metall target (e.g. copper)

Pions are captured in drift channels
with strong (=~ 10 T) magnetic fields

decay to high energy Muons that
have a large spatial and momentum
spread

Muons enter the Section where
Frictional Cooling is applied
Phase Rotation and Reacceleration

a sixdimensional emittance reduction
of 0(10°) is concievable
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goal is to bring the muons in a region
where dT /ds increases with T
— below a few keV (ioniz. peak)

dT /ds x v where v < ac

applying a constant accelerating
force leads to an equilibrium energy

slow muons speed up, fast ones slow
down

— reduction of beam emittance

€ = 0,05,0,0,.0,0,. ] (Tm,c)?
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Protons are heavy charged
particles
— typical stopping power curve

loose energy due to Ionisation,
Nuclear Scattering, Excitation
and Charge Transfer

Protons are easy to produce

e they do not decay!
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Gas cell is filled with Helium

the proton source is variable
mounted at bottom

the detector sits on top

the accelerating grid consists of
21 metal rings which are
connected in series by resistors

on first ring we apply up to
100 kV to provide an almost
homogeneous electric field
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@ magnet consists of a
superconducting coil with 18.2
cm in length and an inner radius
of 5.6 cm

e provides up to 5 Tesla in its center

e the grid including the gas cell is
placed insight the magnet

7132
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The simulation covers all relevant processes

°
e Classes: G4MultipleScattering and G4hLowEnergylonisation
@ Uses experim. data down to 1 keV, below an extrapolation

°

Electronic and Nuclear Stopping Power Modells are based on Report
49 (1994) of the International Commission on Radiation Units (ICRU)

Documentation:
http://users.physik.tu-muenchen.de/cblume/FCDSimDoc/index.html
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@ Simulation of a 50cm x 20cm tube filled with Helium

e Electric and magnetic fields are perfectly
homogeneous and parallel aligned

e Do not consider any initial spatial distribution,
all Protons start at (0,0,0)
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Helium p = 0.01 mg/cm?
E=6kV/cm,B = 3 Tesla

Force on a Proton
dT
F=qE+vxB)—- v

single nucleus scatters

circular tracks due to
Lorentz force

12/32



Y /mm

(4]

(]

Helium p = 0.01 mg/cm?

E=6kV/cm,B = 3 Tesla

Force on a Proton
o dT
F=qE+vxB)- 5V

single nucleus scatters

circular tracks due to
Lorentz force

12/32



The Geant4 MC Simulation
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The Geant4 MC Simulation
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Helium at various densities
B = 0 Tesla

Protons start at center

straight lines: Simulation
dots: data from dT/dx curve

good agreement between
simulation and data

difference to lower energies
due to an increasing cross
section of nucleus scattering

15/32



& @ @

~

T T T e T

—— p=0.005 mgfem®
~ p=0.007 mg/om”
—— p=0010 mglem®
o p=0013myem’
4 p=0015 mg/om®

= p=0.017 mglem’”

)|

107

dT/dx [keVcm?g
3

%

6 8 10 12 14 16 18

20 22
Equilibrium Energy [ keV ]

Protons in Helium

Effective dT/dx

Equilibrium Energy

from Electric Field

L

L
10? 10° 10* 10°

e
T [keV

1

o
)

The Geant4 MC Simulation
An Ideal Setup

Realistic Cooling Cell
Enmittance Reduction

@ Helium at various densities
@ B =0 Tesla

@ Protons start at center

@ straight lines: Simulation

@ dots: data from dT/dx curve

@ good agreement between
simulation and data

o difference to lower energies
due to an increasing cross
section of nucleus scattering

15/32



The Equilibrium

E [KV/cm]

dT/dx [keVcm?g

1
10
LN
L —— =0.005 mg/em®
6 -+ p=0.007 mglem®
F —4— =0.010 mglem®
4f »=0013 mg/em®
[ - =001 myem®
2 = 0017 mylem®
%2 6 8 10 12 14 16 18 20 22
Equilibrium Energy [ keV ]
107 - y
Protons in Helium
10°F Effective dT/dx
from Electric Field
=
an
10 2
&
£
3
10'E 5
g

L

L

L L
10? 10° 10* 10° 10°
T [keV

1

o
)

The Geant4 MC Simulation

An Ideal Setup

Realistic Cooling Cell
Emittance Reduction

Helium at various densities
B = 0 Tesla

Protons start at center

straight lines: Simulation

dots: data from dT/dx curve

good agreement between
simulation and data
difference to lower energies
due to an increasing cross
section of nucleus scattering

15/32



Motivation

Frictional Cooling Demonstration

Monte

Carlo Simulation
Conclusions
Outlook

The Equilibrium Energy

The Geant4 MC Simulation
An Ideal Setup

Realistic Cooling Cell
Emittance Reduction

E [KV/cm]

dT/dx [keVem?g']

1
[ °
10
8-
b —— =0.005 mg/om®
o N
r 4 p=0.010 mgem”
ar =0.013 mgrem®
r —+~ p=0.015 mg/em®
[ 4+ p=0.017 mglem®
L L L L L L L L
% 2 6 8 10 12 14 16 18 20 22
Equilibrium Energy [keV ]
107 - y
Protons in Helium
10°F Effective dT/dx
from Electric Field
>
sk )
10 2
&
£
2
L 8
10* 5
g
" . . . .
10 10° 10° 10 10° 10°

o 107
T [keV]

@ Helium at various densities

@ B =0 Tesla

@ Protons start at center )
@ straight lines: Simulation

@ dots: data from dT/dx curve




Frictional Coolii

Motivation
ng Demonstration

Monte Carlo Simulation

Conclusions
Outlook

The Equilibrium Energy

The Geant4 MC Simulation

An Ideal Setup

Realistic Cooling Cell
Emittance Reduction

E [KV/cm]
3

@ @
L e e L

IS

~

4 p=0.005 miem’
=0.007 mglem®

—— p=0010 mglom®

% 2,

dT/dx [keVem?g']

2

=

N =0013 mglem*
—4 p=0015 mg/em”
= p=0017 mglem’
\ \ , | | | | |
2 6 8 10 12 14 16 18 20 22
Equilibrium Energy [keV ]
Protons in Helium
E Effective dT/dx
from Electric Field
>
E >
3
&
£
E]
L 8
=
g
" . . . .
10 10° 10° 10 10° 10°

o 107
T [keV]

Helium at various densities
B = 0 Tesla

Protons start at center

straight lines: Simulation
dots: data from dT/dx curve

good agreement between
simulation and data




Motivation

Frictional Cooling Demonstration
Monte Carlo Simulation
Conclusions

Outlook

The Equilibrium Energy

The Geant4 MC Simulation
An Ideal Setup

Realistic Cooling Cell
Emittance Reduction

EOL
E ’
w @ Helium at various densities
o
g T st @ B =0 Tesla
6 ©=0.007 mg/em®
[ R— @ Protons start at center
4 o =013 mglem’®
L —+~ p=0.015 mg/em®
2r —+ 9=0017 mglom®
L S T S U T I R @ straight lines: Simulation
Equilibrium Energy [ keV ]
o @ dots: data from dT/dx curve
;: Protons in Helium
i @ good agreement between
5 R . :
e simulation and data
wE | E o difference to lower energies
£ . .
oL |2 due to an increasing cross
g section of nucleus scattering
10 1(‘)2 1‘03 15‘ 1(‘)5 1‘“

o 107
T [keV]



16/32



1.2cm

18cm

Magnet
10cm
]/

3cm

Source Detector f \/

16/32



E,/MV [1/em]

18cm

Magnet
10 cm
]/

3cm

11.2cm
Source Detector \ \/

0.1

0.05
0

-0.05F

04
015

EJ) s 0
z [em]

16/32



E,/MV [1/em]

18cm

Magnet
10 cm
7
11.2cm 3cm
Source Detector \ \/
= 01
ry
H
o S 0.09
8
0.051 -
< 0.08
o'
0
0.07
-0.05)
0.06
01F
0.05
-0.15
ER 50 004y~ T TR 0 A2 i e 1820
z[em] z [em]

16/32



17/32



Foil

17732



The Geant4 MC Simulation

An Ideal Setup

Realistic Cooling Cell
Emittance Reduction

The Proton

Foil

poouAjasy

17732



The Geant4 MC Simulation
An Ideal Setup

Realistic Cooling Cell
Enmittance Reduction

The Proton Source

Foil

)
o

oy
oo

e
9
2%

>
%i 12.45mm

77
5
o

=

Foil thickness of 10 um

5%
%
o

o
oo

o

2

likelyhood

17732



The Geant4 MC Simulation
An Ideal Setup

Realistic Cooling Cell
Emittance Reduction

The Proton Source

Foil thickness of 10 um

Foil

>
%‘ 12.45mm

5
]
s
Zo
oo
Ex

likelyhood

17732



@ Helium at a density of p = 0.01 mg/cm®
(e.g. at T =290 K and P = 60 mbar)

Highvoltage on first ring U = 70 kV
Current through the coil / = 50 A
Source diameter of 3.4 mm

Source offset of 3 cm

Thickness of Mylar foil of 25 pm
Detector Diameter of 3.4 mm
1000,000 Protons starting at 20 eV
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@ Helium at a density of p = 0.01 mg/cm?
(e.g. at T =290 K and P = 60 mbar)

Highvoltage on first ring U = 70 kV
Current through the coil I = 50 A
Source diameter of 3.4 mm

Source offset of 3 cm

Thickness of Mylar foil of 25 pm
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@ Helium at a density of p = 0.01 mg/cm?
(e.g. at T =290 K and P = 60 mbar)

Highvoltage on first ring U = 70 kV
Current through the coil I = 50 A
Source diameter of 3.4 mm
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Thickness of Mylar foil of 25 pm
Detector Diameter of 3.4 mm
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@ Helium at a density of p = 0.01 mg/cm?
(e.g. at T =290 K and P = 60 mbar)

Highvoltage on first ring U = 70 kV
Current through the coil I = 50 A
Source diameter of 3.4 mm

Source offset of 3 cm

Thickness of Mylar foil of 25 pm
Detector Diameter of 3.4 mm
1000,000 Protons starting at 20 eV
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Helium at p = 0.01 mg/cm?

Kinetic Energy vs. Z

@ Mean energy depends only on gas
density and electric field strength

e Large angle nuclear scatters lead to
high energy loss, then reacceleration

Energy distributions

@ see again tail to lower energies

@ more surviving protons to higher
electric fields
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e Large angle nuclear scatters lead to
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@ see again tail to lower energies

@ more surviving protons to higher

electric fields
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Comparison of Mean Energy and Equilibrium

e from dT/ds curve: dT/ds = bT"p withb =2.162 - 102, m = 0.433
e from electric field: E, = k- HV with k = 0.0973 cm™~!
@ Analysis assumptions

e no nucleus scattering = v, = v, =0
e no radial electric field = E, =E, =0
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Equilibrium = Energy Gain
balances Energy Loss

dr
—VéE—i-va
ds

deE

dz ¢
bT"p =k-HV

k-HV\ '™
=B
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p=0.01 mg/cm® and HV = 70 kV

@ wavelike movements

@ strong collimation to higher fields

Spatial distributions

@ o decreases strongly to higher fields

@ number of surviving protons
increases with higher field strengths
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@ Gas cell filled with helium, 3cm x 22cm, p = 0.01 mg/cm?

e Homogeneous electric field at 6 kV/cm
e Homogeneous magnetic field at 5 Tesla

@ Proton source imitates a typical beam from 20 eV to 20 keV
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€r = (f_\-a,,\a\,(r,,\_/(77/11,,(.‘)2

Source : er =4.4-107" (7m)?

EndPlane : er =9.3-107"% (7m)?

= Reduction of Transversal Emittance of approx. one order
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low energy extensions of Geant4 seem to work

@ Frictional Cooling Principle can be demonstrated

with a rate of the proton source of ~ 1 kHz we expect good statistics in
a reasonable measurement period

reach mean energies of the protons in a wide and measureable range

Simulation of a multi-energetic proton source has shown that a particle
beam will reach an equilibrium energy
= Transversal Emittance reduction

But: no reduction of Longitudinal Emittance
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@ low energy extensions of Geant4 seem to work
@ Frictional Cooling Principle can be demonstrated

e with a rate of the proton source of ~ 1 kHz we expect good statistics in
a reasonable measurement period

@ reach mean energies of the protons in a wide and measureable range

o Simulation of a multi-energetic proton source has shown that a particle
beam will reach an equilibrium energy
= Transversal Emittance reduction

@ But: no reduction of Longitudinal Emittance
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@ Simulation improvements in

Spatial and energetic source distributions

Density gradient along the cell

other materials that contribute (e.g. nitrogen, water)
Detector response

Field configurations

@ more analysis of simulation results necessary
o Energy loss

e mean and equilibrium energy
o Acceptance in the detector

= Comparison of simulation and experiment

= Simulation of a Muon Collider Scheme
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Appendix Back up

What is Wakefield Acceleration?

For Further Reading

focusing quadrupoles

Li gas cell

a driver beam bunch of charged
particles propagates through a
plasma

this leads to an oscillation of the
plasma electrons — high electric
fields which can accelerate a
witness beam

an electron beam of several TeV
is conceivable using a PDPWA
high energies achievable, no
synchrotron radiation and small
spatial dimensions (linac)

avoid electrical breakdowns
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Appendix et

Wakefield Acceleration - The main issue

Particle Source = Frictional Cooling = Phase Rotation = Plasma Cell

@ need driver bunches (e.g. protons) with very high densities
and a very small spatial spread

o the gradient reachable by a symmetric driver bunch is limited by

Emwc X (N/UZ)Z

@ to reduce the sixdimensional emittance Frictional Cooling
might be the promising method
— it could be used for both the driver and the witness as long as

they are heavy charged particles

@ phase rotation section still a large obstacle
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Stopping Power in detail
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Protons in Helium
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A typical run - Emittance

initial emittance is zero in simulation and experiment
transversal emittance ey = 0,0, 0,0, /(Tmyc)?
longitudinal emittance ¢, = 0.0, /(mmyc)
from the simulation we get

Oy = @y = 2ol° 103 m

0, =16-10"2m

0p, = 0p, = 770.5keV /c

op, = 232.1keV/c

= e =34-107"2 (vm)?

= ¢ =23.9-107° (7m)

= e=¢ereg = 13107 (m)3
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Focussed particle beams in Medicin

ZWM:V:M
eubon ons @ focussed beams of heavy charged
s g particles (protons, ions) are
[ iotrid needed for
o radiation of tumors
5ir E o assembling of radioisotopes for
- cancer therapy
§ L o they loose almost all their energy
] in a single spot (Bragg peak)
-\% @ Frictional Cooling could help to
! o ] provide collimated particle beams
10 \w with in a system of small
0 Xty - spatial dimensions
1] =] 10 15 20

Tiefe in Wasser (cm)
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The Silicon drift detector

e SDD was developed by the MPI Semiconductor Laboratory (HLL)
and built by PNSensor (originally for X-rays)

o working at resolutions down to 150 eV in the keV range
and a count rate of up to 1 MHz

@ 10 mm? circular area of 450 pm thick Silicon
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Charge Collection Efficiency Curve

Charge Collection Efficiency
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