
Simulation of Frictional Cooling

Christian Blume

Max-Planck-Institut für Physik, München
(Werner-Heisenberg-Institut)

MPI Munich 09/19/08



1 Motivation
Muon Collider

2 Frictional Cooling Demonstration
Demonstrating the Principle
The Experimental Setup

3 Monte Carlo Simulation
The Geant4 MC Simulation
An Ideal Setup
Realistic Cooling Cell
Emittance Reduction

4 Conclusions

5 Outlook



Motivation
Frictional Cooling Demonstration

Monte Carlo Simulation
Conclusions

Outlook

Muon Collider

Why a Muon Collider?

Energies in Electron Colliders are limited due to synchrotron
radiation and me very small
mµ ≈ 206 · me → much less synchrotron radiation

−∆E ∝ m−4

new frontiers in high energy particle physics
Ecms = 1→ 10 TeV

muons are leptons and so are elementary
know the exact collision energy in contrast to hadrons
intensive Neutrino factories
But: Muons decay after 2.2 µs
→ need more advanced Cooling Techniques
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Muon Collider

Muon Collider Scheme

Protons in the range of 2− 30 GeV
produced by a MW accelerator
impact on metall target (e.g. copper)
Pions are captured in drift channels
with strong (≈ 10 T) magnetic fields
decay to high energy Muons that
have a large spatial and momentum
spread
Muons enter the Section where
Frictional Cooling is applied
Phase Rotation and Reacceleration
a sixdimensional emittance reduction
of O(106) is concievable
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Muon Collider

Frictional Muon Cooling - The idea

goal is to bring the muons in a region
where dT/ds increases with T
→ below a few keV (ioniz. peak)

dT/ds ∝ v where v ≤ αc

applying a constant accelerating
force leads to an equilibrium energy
slow muons speed up, fast ones slow
down

→ reduction of beam emittance

ε = σxσpxσyσpyσzσpz/(πmpc)3
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Demonstrating the Principle
The Experimental Setup

Frictional Cooling - Protons to prove the principle

Protons are heavy charged
particles
→ typical stopping power curve
loose energy due to Ionisation,
Nuclear Scattering, Excitation
and Charge Transfer
Protons are easy to produce
they do not decay!
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Demonstrating the Principle
The Experimental Setup

The Gas cell Construction

Gas cell is filled with Helium
the proton source is variable
mounted at bottom
the detector sits on top
the accelerating grid consists of
21 metal rings which are
connected in series by resistors
on first ring we apply up to
100 kV to provide an almost
homogeneous electric field
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Electric Field
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The superconducting magnet

magnet consists of a
superconducting coil with 18.2
cm in length and an inner radius
of 5.6 cm
provides up to 5 Tesla in its center
the grid including the gas cell is
placed insight the magnet
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The Geant4 MC Simulation
An Ideal Setup
Realistic Cooling Cell
Emittance Reduction

The Geant4 MC Simulation

The simulation covers all relevant processes
Classes: G4MultipleScattering and G4hLowEnergyIonisation
Uses experim. data down to 1 keV, below an extrapolation
Electronic and Nuclear Stopping Power Modells are based on Report
49 (1994) of the International Commission on Radiation Units (ICRU)
Documentation:
http://users.physik.tu-muenchen.de/cblume/FCDSimDoc/index.html
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Helium at various densities
B = 0 Tesla
Protons start at center

straight lines: Simulation
dots: data from dT/dx curve

good agreement between
simulation and data
difference to lower energies
due to an increasing cross
section of nucleus scattering
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A typical run

Conditions

Helium at a density of ρ = 0.01 mg/cm3

(e.g. at T = 290 K and P = 60 mbar)
Highvoltage on first ring U = 70 kV
Current through the coil I = 50 A
Source diameter of 3.4 mm
Source offset of 3 cm
Thickness of Mylar foil of 25 µm
Detector Diameter of 3.4 mm
1000,000 Protons starting at 20 eV
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Influence of the electric field

Helium at ρ = 0.01 mg/cm3

Kinetic Energy vs. Z

Mean energy depends only on gas
density and electric field strength
Large angle nuclear scatters lead to
high energy loss, then reacceleration

Energy distributions

see again tail to lower energies
more surviving protons to higher
electric fields
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Mean Energy and Equilibrium

Comparison of Mean Energy and Equilibrium

from dT/ds curve: dT/ds = bTmρ with b = 2.162 · 102 , m = 0.433
from electric field: Ez = k · HV with k = 0.0973 cm−1

Analysis assumptions
no nucleus scattering⇒ vx = vy = 0
no radial electric field⇒ Ex = Ey = 0

23 / 32



Motivation
Frictional Cooling Demonstration

Monte Carlo Simulation
Conclusions

Outlook

The Geant4 MC Simulation
An Ideal Setup
Realistic Cooling Cell
Emittance Reduction

Mean Energy and Equilibrium

Comparison of Mean Energy and Equilibrium

from dT/ds curve: dT/ds = bTmρ with b = 2.162 · 102 , m = 0.433
from electric field: Ez = k · HV with k = 0.0973 cm−1

Analysis assumptions
no nucleus scattering⇒ vx = vy = 0
no radial electric field⇒ Ex = Ey = 0

23 / 32



Motivation
Frictional Cooling Demonstration

Monte Carlo Simulation
Conclusions

Outlook

The Geant4 MC Simulation
An Ideal Setup
Realistic Cooling Cell
Emittance Reduction

Mean Energy and Equilibrium

Comparison of Mean Energy and Equilibrium

from dT/ds curve: dT/ds = bTmρ with b = 2.162 · 102 , m = 0.433
from electric field: Ez = k · HV with k = 0.0973 cm−1

Analysis assumptions
no nucleus scattering⇒ vx = vy = 0
no radial electric field⇒ Ex = Ey = 0

T  [ keV ]
0 2 4 6 8 10 12 14 16 18 20

 ]
-1

 g2
dT

/d
x 

 [ 
ke

V 
cm

200

300

400

500

600

700

800
310×

23 / 32



Motivation
Frictional Cooling Demonstration

Monte Carlo Simulation
Conclusions

Outlook

The Geant4 MC Simulation
An Ideal Setup
Realistic Cooling Cell
Emittance Reduction

Mean Energy and Equilibrium

Comparison of Mean Energy and Equilibrium

from dT/ds curve: dT/ds = bTmρ with b = 2.162 · 102 , m = 0.433
from electric field: Ez = k · HV with k = 0.0973 cm−1

Analysis assumptions
no nucleus scattering⇒ vx = vy = 0
no radial electric field⇒ Ex = Ey = 0

T  [ keV ]
0 2 4 6 8 10 12 14 16 18 20

 ]
-1

 g2
dT

/d
x 

 [ 
ke

V 
cm

200

300

400

500

600

700

800
310×

z  [ cm ]
3 4 5 6 7 8 9 10

 /H
V 

 [ 
1/

cm
 ]

zE

0

0.02

0.04

0.06

0.08

0.1

0.12

23 / 32



Motivation
Frictional Cooling Demonstration

Monte Carlo Simulation
Conclusions

Outlook

The Geant4 MC Simulation
An Ideal Setup
Realistic Cooling Cell
Emittance Reduction

Mean Energy and Equilibrium

Comparison of Mean Energy and Equilibrium

from dT/ds curve: dT/ds = bTmρ with b = 2.162 · 102 , m = 0.433
from electric field: Ez = k · HV with k = 0.0973 cm−1

Analysis assumptions
no nucleus scattering⇒ vx = vy = 0
no radial electric field⇒ Ex = Ey = 0

T  [ keV ]
0 2 4 6 8 10 12 14 16 18 20

 ]
-1

 g2
dT

/d
x 

 [ 
ke

V 
cm

200

300

400

500

600

700

800
310×

z  [ cm ]
3 4 5 6 7 8 9 10

 /H
V 

 [ 
1/

cm
 ]

zE

0

0.02

0.04

0.06

0.08

0.1

0.12

23 / 32



Motivation
Frictional Cooling Demonstration

Monte Carlo Simulation
Conclusions

Outlook

The Geant4 MC Simulation
An Ideal Setup
Realistic Cooling Cell
Emittance Reduction

Mean Energy and Equilibrium

Equilibrium⇒ Energy Gain
balances Energy Loss

dT
ds

v != E + v× B

⇒ dT
dz

= Ez

bTmρ = k · HV

Teq =
(

k · HV
b · ρ

)1/m
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Influence of the magnetic field

ρ = 0.01 mg/cm3 and HV = 70 kV

Trajectories

wavelike movements
strong collimation to higher fields

Spatial distributions

σ decreases strongly to higher fields
number of surviving protons
increases with higher field strengths
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Simulation of a multi-energetic proton source has shown that a particle
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Simulation improvements in
Spatial and energetic source distributions
Density gradient along the cell
other materials that contribute (e.g. nitrogen, water)
Detector response
Field configurations

more analysis of simulation results necessary
Energy loss
mean and equilibrium energy
Acceptance in the detector

⇒ Comparison of simulation and experiment

⇒ Simulation of a Muon Collider Scheme
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What is Wakefield Acceleration?

a driver beam bunch of charged
particles propagates through a
plasma
this leads to an oscillation of the
plasma electrons→ high electric
fields which can accelerate a
witness beam
an electron beam of several TeV
is conceivable using a PDPWA
high energies achievable, no
synchrotron radiation and small
spatial dimensions (linac)
avoid electrical breakdowns
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Wakefield Acceleration - The main issue

Particle Source⇒ Frictional Cooling⇒ Phase Rotation⇒ Plasma Cell

need driver bunches (e.g. protons) with very high densities
and a very small spatial spread
the gradient reachable by a symmetric driver bunch is limited by

Emax ∝ (N/σz)2

to reduce the sixdimensional emittance Frictional Cooling
might be the promising method
→ it could be used for both the driver and the witness as long as

they are heavy charged particles
phase rotation section still a large obstacle
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Stopping Power in detail
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A typical run - Emittance

initial emittance is zero in simulation and experiment
transversal emittance εT = σxσpxσyσpy/(πmpc)2

longitudinal emittance εL = σzσpz/(πmpc)
from the simulation we get

σx = σy = 2.2 · 10−3 m
σz = 1.6 · 10−2 m

σpx = σpy = 770.5 keV/c
σpz = 232.1 keV/c

⇒ εT = 3.4 · 10−12 (πm)2

⇒ εL = 3.9 · 10−6 (πm)

=⇒ ε = εTεL = 1.3 · 10−17 (πm)3
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Focussed particle beams in Medicin

focussed beams of heavy charged
particles (protons, ions) are
needed for

radiation of tumors
assembling of radioisotopes for
cancer therapy

they loose almost all their energy
in a single spot (Bragg peak)
Frictional Cooling could help to
provide collimated particle beams
with in a system of small
spatial dimensions
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The Silicon drift detector

SDD was developed by the MPI Semiconductor Laboratory (HLL)
and built by PNSensor (originally for X-rays)
working at resolutions down to 150 eV in the keV range
and a count rate of up to 1 MHz
10 mm2 circular area of 450 µm thick Silicon
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Charge Collection Efficiency Curve
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