<u>OCD und Jet Physik an e⁺e⁻ Beschleunigern</u>

- Geschichte der Starken Wechselwirkung
- QCD; confinement; asymptotic freedom
- Hadronisierung und Hadron-Jets
- Quark-Spin
- Gluon-Spin
- Selbstkopplung des Gluons
- Asymptotische Freiheit aus Jetraten
- Messungen von α_s

QCD an Hadron-Bechleunigern: -> WS

<u>Geschichte der Starken Wechselwirkung (1)</u>

1932: Entdeckung des Neutrons

- **1933**: $\vec{\mu} \cong 2.5 \frac{e}{2 m_p} \vec{\sigma} \Rightarrow \text{Substruktur des Protons}$
- **1947**: Entdeckung der π -Mesonen und langlebiger V-Teilchen (K⁰, Λ) in Höhenstrahlung
- **1953**: V-Teilchen an **Beschleunigern** produziert; neue innere Quantenzahl ("strangeness").
- **1964**: Statisches Quark-Modell ; neue innere Quantenzahl: Farbe.

 $(p,n,\Lambda,...)$

(π,K,...)

Teilchenphysik mit kosmischen und erdgebundenen Beschleunigern TUM SS15 S.Bethke, F. Simon V5: QCD und Jet Physik

<u>Geschichte der Starken Wechselwirkung (2)</u>

- **1964**: Statisches Quark-Modell ; neue innere Quantenzahl: Farbe.
- **1969**: Dynamisches Partonenmodel:

- **1973**: Konzept der Asymptotischen Freiheit ; Quanten Chromo Dynamik.
- **1975**: 2-Jet Struktur in e⁺e⁻-Vernichtung: Bestätigung Quark-Parton-Modell.
- **1979**: Entdeckung des Gluons in 3-Jet-Ereignissen der e⁺e⁻-Vernichtung.

3-Jet Ereignis gemessen mit dem OPAL Detektor (1989-2000)

Geschichte der Starken Wechselwirkung (3)

L3

30

20

0

Event Fraction (%)

OCD

20°

40°

 χ_{BZ}

• DATA

60[°]

80°

1991: exp. Signatur der Gluon-Selbstkopplung

1990-2000: Bestätigung der Asymptotischen Freiheit

2004: Nobelpreis (Konzept der A.F.) an D. Gross, H.D. Politzer und F. Wilczek

QCD:

- Eich-Feldtheorie der Starken Wechselwirkung
- zugrunde liegende Eichgruppe: SU(3) ; nicht-abelsch
- "Kraft"- oder Austausch-Teilchen: Gluonen
- Selbstwechselwirkung der Gluonen
- renormierte Kopplungskonstante α_s ist energieabhängig:
- α_s groß bei kleinen Energien (grossen Abständen):
 Confinement der Quarks
- α_s klein bei grossen Energien (kleinen Abständen)
 Asymptotische Freiheit der Quarks

<u>Eigenschaften der QED und der QCD :</u>						
	QED	QCD				
Fermionen	<i>Leptonen</i> (e,μ,τ)	Quarks(u, d, s, c, b, t)				
Kraft koppelt an:	elektrische Ladung	3 Farb-Ladungen				
Austausch- quantum	<i>Photon</i> (γ) (trägt keine Ladung)	$\frac{Gluonen(g)}{(\text{tragen 2 Frabladungen})} \Rightarrow g g g g g g g g g g g g g g g g g g $				
Kopplungs- "Konstante"	$\alpha(Q^2=0) = \frac{1}{137}$	$\alpha_s(Q^2 = M_Z^2) \approx 0.12$				
Freie Teilchen	<i>Leptonen</i> (e,μ,τ)	(Farbneutrale, gebundene Zustände von \overline{q} and q) Hadronen				
Theorie	Störungstheorie bis zur $O(\alpha^5)$	Störungstheorie bis $O(\alpha_s^4)$				
Erreichte Präzision	10 ⁻⁶ 10 ⁻⁷	1% 20%				

<u>Warum gibt es keine freien Quarks?</u>

Energieabhängigkeit der Kopplungs-"Konstanten":

<u>Renormalisation Group Equation ("β-function")</u>

• in führender Ordnung Störungstheorie:

$$\mu \frac{\mathrm{d}}{\mathrm{d}\mu} \alpha_i(\mu) = -\beta_0 \alpha_i^2 \qquad \text{mit} \quad \beta_0 = \frac{1}{2\pi} \left[\frac{11}{3} \begin{pmatrix} N_c \equiv 0 \\ N_c \equiv 2 \\ N_c \equiv 3 \end{pmatrix} - \frac{4}{3} \begin{pmatrix} N_{fam} \\ N_{fam} \\ N_f / 2 \end{pmatrix} - N_{Higgs} \begin{pmatrix} \frac{1}{10} \\ \frac{1}{6} \\ 0 \end{pmatrix} \right] \xleftarrow{} QED \\ \xleftarrow{} QED$$

• Integration \Rightarrow

$$\alpha_i(q^2) = \frac{\alpha_i(\mu^2)}{1 + \frac{\beta_0}{2}\alpha_i(\mu^2)\ln\frac{q^2}{\mu^2}}$$

QCD: N_c = 3 ; $\beta_0 = \frac{23}{6\pi}$

Energieabhängigkeit der Kopplungs"konstanten":

• experimentell mit hoher Genauigkeit verifiziert

Anatomy of hadronic events in e^+e^- annihilation

- QCD: shower development calculated in perturbation theory (fixed order; (N)LLA)
- Hadronisation: phenomenological models of string-, cluster- or dipole fragmentation
- Decays: randomized according to experimental decay tables

Physik der Hadronen-Jets

Zum Vergleich von Hadronen-Jets mit analytischen QCD -Rechnungen (Quark- und Gluonendynamik) muß man auflösbare Teilchenjets <u>Theorie und Praxis</u> definieren.

Dazu benötigt man:

- Definition eines Auflösungskriteriums (z.B. minimale invariante Paarmasse, minimale Winkel, minimale Energien ..)
- Vorschrift, wie man nichtauflösbare Jets rekombiniert.

allerdings:

Es gibt keine "natürliche" Definition von Jets !

überlappende Jets → kollineare Divergenzen

niederenergetische "Jets"→ Infrarot-Divergenzen

Durham - Jetdefinition: (meistbenutzt in e⁺ e⁻ -Vernichtung)

2 Gruppen von Teilchen, i und j, können aufgelöst werden falls für die minimale transversale Energie der 4er-Vektoren, $y_{ij} = 1/2 \min(E_i^2, E_j^2) \cdot (1 - \cos(\theta_{ij}), \text{gilt:} \quad y_{ij} \ge y_{cut}$ Falls $y_{ij} < y_{cut}$, werden die 'Proto-jets' i und j von einem neuen, einzelnen (Proto-) Jet k ersetzt (Rekombination): $p_k = p_i + p_j$ (rekursives Verfahren, bis alle $y_{ij} \ge y_{cut}$).

Test of basic quantum numbers (q-, g-spin):

Quark-Spin = $1/2 \iff \frac{d\sigma}{d\theta} \sim (1 + \cos^2\theta)$

coarse structure:quarks have spin 1/2fine structure:deviation from 1 + cos $^2\theta$ is due to electro-weak interferencecontributions of 4.5%; $sin^2 \theta_w = 0.2255 \pm 0.00212$

Orientation of Gluon-Jets in 3-Jet-Events:

Test of the Gluon-Spin (QCD: g-spin = 1)

Non-Abelian gauge structure from 4-jet events

Teilchenphysik mit kosmischen und erdgebundenen Beschleunigern TUM SS15 S.

1 SS15 S.Bethke, F. Simon V5: QCD und Jet Physik

Asymptotic Freedom (running α_s) Historically (1987):

energy dependence of 3-jet production rates (R₃): $R_3 = C_1(y_{cut}) \cdot \alpha_s(\mu) + C_2(y_{cut}) \cdot \alpha_s^2(\mu)$

Asymptotic Freedom from jet rates

Experimental Determination of α_s

in all processes in which gluons occur:

• e+e-annihilations

- total hadronic production cross section
- hadronic decay widths of the Z^0 and of the ${\ensuremath{\tau}}$
- jet rates and shape variables
- deep inelastic lepton-nucleon-scattering
 - scaling violations of structure functions
 - sum rules of structure functions
 - jet rates and shape variables
- proton-(anti-)proton collisions
 - jet rates
 - photoproduction
 - inclusive b-quark production

running α_s up to 4th order:

$$Q^2 \frac{\partial \alpha_{\rm s}(Q^2)}{\partial Q^2} = \beta \left(\alpha_{\rm s}(Q^2) \right)$$

 $\beta(\alpha_{\rm s}(Q^2)) = -\beta_0 \alpha_{\rm s}^2(Q^2) - \beta_1 \alpha_{\rm s}^3(Q^2) - \beta_2 \alpha_{\rm s}^4(Q^2) - \beta_3 \alpha_{\rm s}^5(Q^2) + \mathcal{O}(\alpha_{\rm s}^6)$

$$\begin{split} \beta_0 &= \frac{33 - 2N_f}{12\pi} ,\\ \beta_1 &= \frac{153 - 19N_f}{24\pi^2} ,\\ \beta_2 &= \frac{77139 - 15099N_f + 325N_f^2}{3456\pi^3} ,\\ \beta_3 &\approx \frac{29243 - 6946.3N_f + 405.089N_f^2 + 1.49931N_f^3}{256\pi^4} \end{split}$$

$$\begin{split} \alpha_{\rm s}(Q^2) &= \frac{1}{\beta_0 L} - \frac{1}{\beta_0^3 L^2} \beta_1 \ln L & \text{Ritbergen,} \\ &+ \frac{1}{\beta_0^3 L^3} \left(\frac{\beta_1^2}{\beta_0^2} \left(\ln^2 L - \ln L - 1 \right) + \frac{\beta_2}{\beta_0} \right) & \text{Larin} \\ &+ \frac{1}{\beta_0^4 L^4} \left(\frac{\beta_1^3}{\beta_0^3} \left(-\ln^3 L + \frac{5}{2} \ln^2 L + 2 \ln L - \frac{1}{2} \right) - 3 \frac{\beta_1 \beta_2}{\beta_0^2} \ln L + \frac{\beta_3}{2\beta_0} \right) & L = \ln \frac{Q^2}{\Lambda_{MS}^2} \end{split}$$

 β_0 and β_1 do not depend on renormalisation scheme; β_2 and β_3 ... do !

choose MS scheme for all of the following discussion.

relative size of higher order corrections

heavy quark threshold matching

Matching conditions for the choice $\mu^{(Nf)} = M_q$ (pole mass definition): $\frac{a'}{a} = 1 + C_2 \ a^2 + C_3 \ a^3$ (with $a' = \alpha_s^{(Nf-1)}/\pi$; $a = \alpha_s^{(Nf)}/\pi$) $C_2 = -0.291667$ and $C_3 = -5.32389 + (N_f - 1) \cdot 0.26247$

perturbative predictions for physical quantities

$$\mathcal{R}(Q^2) = P_l \sum_n R_n \alpha_s^n$$

= $P_l \left(R_0 + R_1 \alpha_s(\mu^2) + R_2 (Q^2/\mu^2) \alpha_s^2(\mu^2) + ... \right)$

in n^{th} order perturbation theory

 R_1 : "leading order coefficient" (lo) R_2 : "next to leading coefficient" (nlo) R_3 : "next-next-to leading" (nnlo)

Resummation of logs arising from soft and collinear singularities:

$$\Sigma(\mathcal{R}) \equiv \int_0^{\mathcal{R}} \frac{1}{\sigma} \frac{d\sigma}{d\mathcal{R}} d\mathcal{R} = C(\alpha_s) \exp\left[G(\alpha_s, L)\right] + D(\alpha_s, \mathcal{R}) \qquad L = \ln(1/\mathcal{R}) \qquad C(\alpha_s) = 1 + \sum_{n=1}^{\infty} C_n \hat{\alpha}_s^n$$
$$G(\alpha_s, L) = \sum_{n=1}^{\infty} \sum_{m=1}^{n+1} G_{nm} \hat{\alpha}_s^n L^m$$

$$\equiv Lg_1(\alpha_{\rm s}L) + g_2(\alpha_{\rm s}L) + \alpha_{\rm s}g_3(\alpha_{\rm s}L) + \alpha_{\rm s}^2g_4(\alpha_{\rm s}L) \cdots$$

	Leading	Next-to-	Subleading	Non-log.	
	$\log s$	Leading logs	$\log s$	terms	
$\ln \Sigma(\mathcal{R}) =$	$G_{12}\hat{lpha}_s L^2$	$+G_{11}\hat{\alpha}_s L$		$+ \alpha_{\rm s} \mathcal{O}(1)$	$\mathcal{O}(\alpha_{\rm s})$
	$+ G_{23} \hat{\alpha}_s^2 L^3$	$+G_{22}\hat{\alpha}_s^2L^2$	$+G_{21}\hat{lpha}_s^2L$	$+ \alpha_{\rm s}^2 \mathcal{O}(1)$	$\mathcal{O}(\alpha_{ m s}^2)$
	$+G_{34}\hat\alpha_s^3L^4$	$+G_{33}\hat\alpha_s^3L^3$	$+ G_{32}\hat{\alpha}_s^3 L^2 + \cdots$	$+\cdots$	$\mathcal{O}(\alpha_{\rm s}^3)$
	$+\cdots$	$+\cdots$	$+\cdots$	$+\cdots$	÷
=	$Lg_1(\alpha_{\rm s}L)$	$+g_2(\alpha_{\rm s}L)$	$+\cdots$	$+\cdots$	

renormalisation scale dependence

$$\mathcal{R} \equiv \mathcal{R}(Q^2/\mu^2, \alpha_{\rm s}); \ \alpha_{\rm s} \equiv \alpha_{\rm s}(\mu^2)$$

since choice of μ is arbitrary, physical observables \mathcal{R} should not depend on μ

$$\begin{split} \mu^2 \frac{\mathrm{d}}{\mathrm{d}\mu^2} \mathcal{R}(Q^2/\mu^2, \alpha_{\mathrm{s}}) &= \left(\mu^2 \frac{\partial}{\partial\mu^2} + \mu^2 \frac{\partial\alpha_{\mathrm{s}}}{\partial\mu^2} \frac{\partial}{\partial\alpha_{\mathrm{s}}}\right) \mathcal{R} \stackrel{!}{=} 0\\ 0 &= \mu^2 \frac{\partial R_0}{\partial\mu^2} + \alpha_{\mathrm{s}}(\mu^2) \mu^2 \frac{\partial R_1}{\partial\mu^2} + \alpha_{\mathrm{s}}^2(\mu^2) \left[\mu^2 \frac{\partial R_2}{\partial\mu^2} - R_1 \beta_0\right] \\ &+ \alpha_{\mathrm{s}}^3(\mu^2) \left[\mu^2 \frac{\partial R_3}{\partial\mu^2} - \left[R_1 \beta_1 + 2R_2 \beta_0\right]\right] \\ &+ \mathcal{O}(\alpha_{\mathrm{s}}^4) \;. \end{split}$$

>
$$R_0 = \text{const.}$$
,
 $R_1 = \text{const.}$,
 $R_2 \left(\frac{Q^2}{\mu^2}\right) = R_2(1) - \beta_0 R_1 \ln \frac{Q^2}{\mu^2}$,
 $R_3 \left(\frac{Q^2}{\mu^2}\right) = R_3(1) - [2R_2(1)\beta_0 + R_1\beta_1] \ln \frac{Q^2}{\mu^2} + R_1\beta_0^2 \ln^2 \frac{Q^2}{\mu^2}$

Perturbative QCD coefficients beyond leading order become renormalisation scale dependend ! This dependence is used to quantify theoretical uncertainties due to unknown higher orders.

hadronische Breite des Z⁰ Boson

α_s from τ -decays

$$R_{\tau} = \frac{\Gamma(\tau \rightarrow \text{hadrons } v_{\tau})}{\Gamma(\tau \rightarrow e v_e v_t)}$$

 $QCD: \quad R_{\tau} = 3.058(1.001 + \delta_{pert} + \delta_{nonpert})$

$$\delta_{pert} = \frac{\alpha_s(m_\tau)}{\pi} + 5.20 \left(\frac{\alpha_s(m_\tau)}{\pi}\right)^2 + 26.37 \left(\frac{\alpha_s(m_\tau)}{\pi}\right)^3$$

measurements of R as well as the mass spectra of hadronic τ -decays and comparison with O(α_s^3) perturbative QCD results in $\alpha_s(M_{\tau})$ also provides an independent determination of the leading nonperturbative contributions $\delta_{nonpert}$

 $\alpha_s(M_z) = 0.1213 \pm 0.0006 \text{ exp} \pm 0.0010 \text{ theo}$

<u>e</u>	
à	
2	
Ő	
Ő	
$\overline{\bigcirc}$	
ð	
O O	
Ū	
Sh	
t Sh	
ent Sh	
/ent Sh	

			ypical Value		
Name of Observable	Definition	Ĵ	Â	₩	QCD calculation
Thrust	$T = \max_{\vec{n}} \left(\frac{\sum_{i} \vec{p}_{i}\vec{n} }{\sum_{i} \vec{p}_{i} } \right)$	1	≥2/3	≥1/2	$\frac{(\text{resummed})}{O(\alpha_s^2)}$
Thrust major	Like T, however T_{maj} and \vec{n}_{maj} in plane $\perp \vec{n}_{T}$	0	≤1/3	≤1/√2	$O(\alpha_s^2)$
Thrust minor	Like T, however T_{min} and n_{min} in direction \perp to \vec{n}_T and \vec{n}_{maj}	0	0	≤1/2	$O(\alpha_s^2)$
Oblateness	$O = T_{maj} - T_{min}$	0	≤1/3	0	$O(\alpha_s^2)$
Sphericity	$S = 1.5 (Q_1 + Q_2); Q_1 \le \le Q_3 \text{ are}$ Eigenvalues of $S^{\alpha\beta} = \frac{\sum_i p_i^{\alpha} p_i}{\sum_i p_i^2}$	0	≤3/4	sI	none (not infrared safe)
Aplanarity	A = 1.5 Q ₁	0	0	≤1/2	none (not infrared safe)
Jet (Hemis- phere) masses	$M_{\pm}^{2} = \left(\sum_{i} E_{i}^{2} - \sum_{i} \vec{p}_{i}^{2}\right)_{i \in S_{\pm}}$ $(S_{\pm}: \text{ Hemispheres } \pm \text{ to } \vec{n}_{T})$				
	$M_{H}^{a} = \max(M_{+*}^{a}M_{-}^{a})$ $M_{D}^{2} = M_{+}^{2} - M_{-}^{2} $	0	≤1/3 ≤1/3	≤1/2 0	(resummed) $O(\alpha_s^2)$
Jet broadening	$B_{\pm} = \frac{\sum_{i \in S_{\pm}} \vec{p}_i \times \vec{n}_T }{2 \sum_i \vec{p}_i }; B_T = B_+ + B$ $B_w = \max(B_{\pm}, B)$	0	≤1/(2√3) ≤1/(2√3)	≤1/(2√2) ≤1/(2√3)	(resummed) $O(\alpha_s^2)$
Energy-Energy Correlations	$EEC(\chi) = \sum_{event} \int_{\chi^{*}}^{\chi^{*} \frac{\Delta g}{2}} \sum_{i,j} \frac{E_{i}E_{j}}{E_{vis}^{2}} \delta(\chi \cdot \chi_{ij}) d\chi$		Ţ Į	0 π	$\frac{(\text{resummed})}{O(\alpha_s^2)}$
Asymmetry of EEC	$AEEC(\chi) = EEC(\pi - \chi) - EEC(\chi)$	0	π/2 0 π/2	20 π/2	$O(\alpha_s^2)$
Differential 2-jet rate	$D_2(y) = \frac{R_2(y - \Delta y) - R_2(y)}{\Delta y}$				$(\frac{(\text{resummed})}{O(\alpha_s^2)}$

Jet production and hadronic event shapes

 α_s aus Jetraten und event shapes in NNLO QCD:

globale Zusammenfassung der Messungen von α_s

Evidence for Asymptotic Freedom:

Zusammenfassung:

- QCD als Eichfeldtheorie der Starken Wechselwirkung etabliert:
 - asymptotische Freiheit aus Energieabhängigkeit der Jetraten und von α_s experimentell verifiziert
 - Farbladung der Gluonen etabliert
 - Spins der Quarks (1/2) und der Gluonen (1) gemessen
- Quarks und Gluonen existieren nicht als freie Teilchen, sondern nur in gebundenen, "farblosen" Zuständen (Hadronen)
- bei hohen Reaktionsenergien folgen Hadronen den Richtungen der erzeugten primären Quarks und Gluonen ("Jets")
- präzise Messungen der Eigenschaften der Jets ermöglichen quantitative Tests der QCD
- Messung von α_s aus vielen Reaktionen: $\alpha_s(M_Z) \sim 0.12$ (0.1185 ± 0.0006)

Literaturempfehlungen

- Ellis, Stirling, Webber: "QCD and Collider Physics", Cambridge Monographs,
- A QCD primer, G. Altarelli, CERN School 2001, http://preprints.cern.ch/cernrep/2002/2002-002/2002-002.html
- Quantum Chromodynamics, M.H.Seymour, 2004 European School of High-Energy Physics, hep-ph/0505192
- *QCD Studies at LEP*, S. Bethke, Phys. Rept. 403-404 (2004) 203-220, hep-ex/0406058
- *The 2009 World Average of alpha(s)*, S. Bethke, Eur.Phys.J. C64:689-703, 2009. arXiv:0908.1135 [hep-ph]
- Review of Particle Physics, Chin.Phys. C38 (2014) 090001 . http://pdg.lbl.gov/2014/reviews/rpp2014-rev-qcd.pdf