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Why an EFT for QCD?

. A perturbative description of collider phenomena with widely separated
momentum scales generically involves large logarithms of the scales’ ratios—these

must be resummed:
1
ag In™ ('u—)
2

| — | —

- Traditional approaches in QCD based on coherent branching algorithm (CTTW)
which sums probabilities of independent gluon emission diagrammatically

- Effective field theories allow for analytic resummation using renormalisation
group techniques at the amplitude level...very efficient.

- Hierarchy of scales implemented at the level of the Lagrangian...



Resummation |: 7 @ small pr

1109.6027(Becher / Neubert/ Wilhelm)

2
For pp -> Z + X @ small pr all radiation is o’ 1n2" <m2Z )
S
confined to the beam or soft P

Perturbative expansion plagued by large
logarithms of mz/pr— resummation

required. =
S
Traditional QCD resummation using CSS . n
) 3
(N. Phys. B250), incomplete NNLL (hep-ph/0302104)
Becher, Neubert, and Wilhelm achieve
NNLL resummation via SCET methods. 77 [GeV]

pr distribution of Z-boson
production @ LHC



Resummation 1l: thrust

Thrust is an e*e- event shape—a geometric, dimensionless physical observable
characterising the momentum distribution of particles

p—LT % neo
| < : = = —> n5
n-collinear = — n-collinear
jet jet

ultrasoft particles

thrust 7T = max Ei p, - E i %: %ré

n . .
Ez |p2| two-jet like: T ~ 1 spherical: T ~1/2




Resummation 1l: thrust

0803.0342v2(Becher/Schwartz)

Traditional QCD resummation achieved by CTTW @ NLL (Nucl. Phys. B407 [1993])
Recently extended to NNLL (1105.4560; Monni, Gehrmann, Luisoni)

Becher, Schwartz achieve N3LL resummation using SCET methods (kind of)
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Resummation: a.

- Resummed results used to perform precision extractions of strong coupling:

as(mz) determination from event shape fits

| [Dissertorietal] ¢ MC power Analytic power .
0.125k T corrections_ corrections _
i FO -
I T, P, Yg, B i
. ¢ Pe .
i [Chien & Schwartz] J

0.120 T,p, Y3, B T tail fits moments fits
: } [ world average _ :
R T. [Gehrmann et al] [AFHMS] o
I ¢ N2LL i
0.115F 1 | O _
L [Becher & Schwartz] | T -
B N3LL [Davison Webber]. 1 7
i resummation NLL [AFHMS] 7,p, Y3, B .
0.110 B 1 NS3LL [Gehrmann et al] -
[compilation from A. Hoang, QCD workshop, Singapore, March 2013]

- -> Higher log resummations reduce uncertainties.

- ->  Precision fits are lower than the world average.



Introducing SCE’l: ituition

» SCET is an effective theory whose degrees of freedom are soft and

collinear partons

split into two energetic
collinear partons A

- % T E;j~Q

split into two energetic
collinear partons

2
m
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emit soft gluons that
do not deflect the
energetic quark
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split into two energetic
collinear partons

[
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= jet of collinear particles m5 < Ej

emit soft gluons that

soft large-angle radiation Es < Ey do not deflect the

energetic quark




Introducing SCEl: notation

- SCET is formulated in light-cone basis:

n* = (1,0,0,1) At = (1,0,0,—1

)
n-n=0=n-n n-mn—29

- Such that any vector or invariant can be parameterised as follows:

J_ . _
p“:7”°19+7” p+p-t=(pT,p,pH)
P’ =pTp +pt

1 1 Lo




Introducing SCE’l: power-counting

- Separation of scales in EFTs characterised by power counting expansion parameter,
in SCET this parameter changes depending on observable, e.g.:

(Z@small pr) M\ = T A =+/7 (thrust)
Mz

- Momentum scaling is then determined for each relevant type of particle.
Consider back-to-back light jets on the light cone, with background soft radiation:

Collinear scaling along + PP~ QLN M)y

Collinear scaling along - ¢ ~ QN 1,))

Ultrasoft scaling kf e~ QA% 0%, 0%)

10



Introducing SCE'T: SCET) vs. SCE Ty

»  There are two types of SCET, depending on the relative scaling of soft and collinear modes:

Thrust (SCETy) Z @ small pt (SCETn)

» Thrust ps < P2

» Zsmallpr p2 ~ p2

- In SCET]y scaling alone does not suffice to differentiate—can only distinguish modes from their
rapidity...

11



Introducing SCEl: effective Lagrangian

- Begin with fundamental QCD fields and split into soft and collinear components:

Ab(z) — At (z) + A (x) UH(z) — UH(z) + Uk (x)

«  Further project collinear fermion into two components:

(@)= "0, (a), @) = P

- Now consider 2-pt correlators, and determine how field scales:

(OH{¢(@)C(0)}[0) ~ A% = ¢(z) ~ A (n(z) ~ A°)

- Now, integrate out power suppressed modes. Note, this is not a traditional EFT! Let’s look
at the collinear portion of the SCET Lagrangian:

£QC’D — \Ijzm\lj = £collinear — <_ (Zn D+ Zlbj_ Zﬁl Dzlbj_> %C
C

m-D=in-0+gn-A.+gn- A

only collinear-soft interaction at leading order in A



Introducing SCE'T: dijet factorisation

We can derive all order factorisation theorems in SCET. Two critical steps. “Hard-Collinear
factorisation” (1) & “Soft-decoupling” (2):

(1) T(0) A* W(0) - / dsdt Cy(s,8) (CaWa)(sn) 7" (WiCa)(tn)

0
W. = Pexp (zg/ dsn - Ac(x + sﬁ))

—00

«  Cy(s,t) is a Wilson coefficient to be determined in matching QCD to SCET

- Explicit non-locality along light-cone directions manifest -> Wilson lines necessary for gauge
invariance. After a field redefinition, we obtain (some spatial dependence suppressed):

Cn(2) = S(2-)(n(x)

(2) T(0) +* T(0) - / dsdt Cy(s,t) & WOTST 4 WOs,, (0

- Now the Lagrangian contains no interactions between collinear and soft fields (at leading order), but
the current still contains both...

13



Xilpi - nl

Thrust w/ SCIE'T: factorisation  trest T = mas =7

We can thus factorise our matrix element for the dijet, two-fermion operator quite simply:

Cv[* 2010w | X)I*

= (vl (of [owet] [cow ] o) (of [w2e) (w2e)10) of [55.] [sisa]' 10)

2 4 p2 (for dijet

B 9 2 2 2 2 _ w
H(Q ,u)/dpL/dpR JWL. 1) J(PR,p) S(TQ Q ) thrust)

ida

oo dr

J(p) H(Q?) J(pz)
&QQQy S NN

§ g % “soft-decoupling”
S(us)
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Thrust w/ SCET: resummation

H, J', and S contain logs of the form (respectively):

2 2 2

mE A

Y ? n
0?2 (2 72()2
We evaluated H, J', and S at a common scale. Yet there are ‘natural’ scales at which the logarithms are no
longer large:
pp ~ Q iy ~ QVT  pis ~ QT

«  We thus wish to RG run our functions up to their natural scales. Take H as a simple example:

H(Q27 :u) — H(Q27 :uh) Uh(:uha :u)
«  Where the function U is a solution to the RG equation for the hard function:

dH (Q?, 1)
dlIn

- [zr%p In (%22) - 47H(ozs)] H(Q?, p)

- Which, at LL approximation, has the following form:

2 = dnlo 1 1 o, Toas(Q) | Q° 9 o)
H(Q%, 1) —exp[ 58 () (1— - —lnfr)] = 1— > A In <_>+@(a ), r—

- Similar for jet and soft functions... s



Resummation: Technicalities

Logarithmic Accuracy | I'cusp | YH, VJs Vs | CH, Cj, Cs
LL 1-loop tree tree
NLL 2-loop 1-loop tree
NNLL 3-loop 2-loop 1-loop
N3LL 4-loop 3-loop 2-loop

SCET Observables @ NNLL: broadening, Z/W /H @ small pr, jet-veto ...

SCET Observables @ N3LL: thrust, C-parameter, Z/W /H @ large pr, ...
Automated code for QCD resummation @NLL: CAESAR (Banfi, Salam, Zanderighi)

Recently extended to NNLL for

(Banfi, McAslan, Monni, Zanderighi)

We want to automate soft functions in SCET...

16



Universal dijet soft functions

- We can write down a universal dijet soft function as the vacuum matrix element of a product of
Wilson lines along the direction of energetic quarks.

0
S(w,p) = % M(w, {k;})|(X]ST(0)S5(0)]0)/? Sn(x) = Pexp(igS/ n- As(x + sn)ds)

X,reg. —00

«  The matrix element of soft wilson lines is independent of the observable. It contains the universal
(implicit) UV /IR-divergences of the function.

«  The measurement function (M) encodes all of the information of the particular observable at
hand. It is independent of the singularity structure. Take thrust as an example:

1) — _ _ =
Mthrust(wa {kz}) 5(0} iELkz ingZ )

- Idea: isolate singularities at each order and calculate the associated coefficient numerically:

S(r) ~ 1+ a5 + 5 +ao} +0(al)

The coefficients depend on the observable, we typically work in Laplace space.
17



Universal soft functions: NLLO

- We work in Laplace space, so that our functions are not distribution valued. At 1-loop the virtual
corrections are scaleless in DR and we can write the NLO soft function as:

2e

SO(r) = s [ 602 009) Ratvskebo) (22 ) par i

- Where we use a symmetric version of the analytic SCETy; regulator (Becher, Bell / 1112.3907):

Ra(v, by, ko) = 0(k— — ky)(v/k=)" + 0(ky — k—)(v/k4)”

- We want to disentangle all of the UV and IR divergences. We thus split the integration region into two
hemispheres and make the following physical substitutions:

kr
k— — — ki — kpy
VAL

- We can now specify the measurement function M. We assume it can be written in terms of two
dimensionless functions f & g:

M(T7 k) — g(TkTa Y, (9) exp(—Tka(y, (9))

18



Universal soft functions: examples

M(1, k) = g(tkr,y,0) exp(—71kr f(y,0))

Obs. g(tkr,y,0) f(y,0)
Thrust 1 VY
Angularities 1 y(1=4)/2
C-Parameter 1 VY/(1+y)
Broadening I'(1—¢) (#)6 J—e (% 1/2

W/H @ large pr

VY
|?1|{\/1 + 1 (% - \/§>282 + (% - \/g) cs cosf — s2 cos? 6
Transverse Thrust 1 Y
—|ccos @ + % (ﬁ — \/@) s|}

19



Universal soft functions: N1.O master formula

We switch to a dimensionless variable (x) and extract the scaling of the observables in the collinear
limit y = 0:

Thrf(y,0) — x f(y,0) = y2 f(y,0)

We are now in a position to write a master formula for the calculation of NLO dijet soft functions:

SW (7, ) ~/

—1

1 00 1
Sin—1—2€0 d cos 0 / dCC/ dy w—1—2e—a y—1+ne+(n—1)a/2 g(x,y,e) [f(y,H)]26+o‘ e
0 0

Note that n=0 corresponds to a SCETy observable.

We are in a position to apply a subtraction technique to extract the singularities. Consider a simple
1-D example:

/ dr 217 () / dr 2= f(2) — £(0) + £(0))
0 0

l l

divergent . finite/ O(x) o i
- expand in ¢ ne
. integrate - singularity
numerically isolated

20



Automation: N1L.O vs. NN1L.O

NLO:

NNLO:

S

& <

<

> <

> <D

> & B <

§>@<@><§~




Automation: N1L.O vs. NN1L.O

- Consider the double real emission (and drop additional regulator):

4e

S%n(T) = (27:;%_2 /ddk (k%) H(ko)/ddl 5(1%) 0(1%) | Ak, D)|? M(T,k,1)

- Decompose into light-cone coordinates and perform trivial integrations:

S (r) ~ Qq_ 3Qd4/ dk+/ dk/ dl+/ dl_ / dcos by sin? 56,

X / dcos @) sin?~ 5(%/ d cos 6, 00 (kpk 1 1) Ak, D> M(1,k,1)
~1 ~1

- Consider, e.g., the C¢Ten¢ color structure:

2k (k- + 1) (ke +14) — (k_ly — kyl_)?

kD =1287%a2CrT
‘A( ; )‘ T aUpLlpNny (]{7_—|-l_)2(]{7_|_—|-l_|_)2(2]{71)2

. Itis clear the singularity structure is non-trivial, and that the singularities are
overlapping...

22



Automation: sector decomposition

Consider a simple integral over a unit hypercube with ‘overlapping singularities’ (singular as x,y

simultaneously tend to 0):
1 1
I= / da:/ dy(x +1y) 2T
0 0

We want to factorise such singularities. Split the hypercube with two sectors (x>y) and (y>x):

1 T 1 Y
I=1+1I :/ d:c/ dy(m+y)_2+€+/ dy/ da(x + ) 2t
0 0 0 0

Now substitute y = xt in first sector and x = yt in second:

1 1
I = / da?/ dt =1 Te(1 4 t) 72t
0 0

1 1
12:/ dy/ dt Y114 1) 2
0 0

t Y

Image: J. Carter
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https:/ /secdec.hepforge.org

Automation: Seclec

Heinrich, Jones, Kerner, Borowka, Schlenk, Zirke

A tool is already on the market that exploits the sector decomposition algorithm: SecDec

“A program to evaluate dimensionally regularised parameter integrals numerically”

/

Loop General

SecDec

- We use SecDec’s ‘general’ mode, as it allows the definition of dummy functions.

- SecDec provides: Simple interface to our NLO and NNLO master formulas (¢/),
numerical code output (¢), multiple numerical integrators for crosschecks (v/)

»  Currently limited to SCET; observables, though additional rapidity regulator in
development.
24


https://secdec.hepforge.org

Automation: NNLO parameterisation

We thus need to find an appropriate phase space parameterisation that exposes the divergence
structure and is amenable to sector decomposition (SecDec):

k_ly
bl

k_k k
P+ = ]C_|_ -+ l_|_ b = + = —T
I_l  p

We further write the total momentum components in terms of pr and y (as in NLO case):

p_ — k_ —I— l_ a = — 6_(77k_77l)

Pt
pP—— —F—= P+ 7 DPTVY
L b
Finally, we map onto the unit hyper-cube:
b, b
B A A B
(y<1) ! (y>1) 1
A B B A
0 1 o0 0 1 o0

25



Automation: NNL.O master formula

We again assume an exponentiated form for the (Laplace space) measurement function:

M(1,k,1) = exp{—7 pr F(a,b,y,t:(6;))}

- We again assume a factorised y-dependence in F(a,b,y):

N
2

F(a,b,y,t;) =y F(aybayati)

- We arrive at an NNLO master formula (here shown for CrTrnsamplitude):

2€ 8Ck§CFTan F(—4€)
w2 VID(1 — T (% —¢)

1 1 1 1
X/ | db/ dy/ by~ N2 (0 4 b) 2 (L a) 2 ()

A

Sir(r) = (u*r%e)

oy = (1 —t@w))

26



NNLO Measurement functions: examples

Observable

F (y, a, b, ti (91))

Inclusive Drell-Yan

1

AR

C-Parameter

b

W(a(

1
_I_
a+b)+y(1+abd) a—l—b—l—ay(l—l—ab))

+@< _a(1+ab)> ( A—1 (L)l_é ( 1 )% B (
Yy a+b Yy a+b 1+ab

1+ ab a VY
Thrust Oly- N
rus VY + (y aa—l—b)<\/§(a—|—b) 1+ab>
-4, 1 \% 1 \'"% 2
Angulariti A ;
ngularities VY [(1+ab a+b i 1+ ab a+b

) ()")]

W/H at hlgh T

L
NG

+\/§_2\/(a+b)?1+ab) [1—2t2+b<1—2t+t2 21ty —2(1—2t1)\/ttt2t2)]

Recoil-free

broadening

\/(a+b)(1+ab)(1+b)

27



Analytic regulator for NNLO

We extend the NLO definition to account for two gluons:

Ro(v; k1) =

@%+—k)(é>2+CWc—kg<

Ly

@@+—L)(5>g+@a_—u)c%

U\ 2
k_

)

This definition still respects the n <+ 1 and k <+ | exchange symmetries

Using our NNLO parameterisation, the regulator function takes the form

o (1+ab\? a(a +b)
RA ) o o ®)
o Vil D) = v py ( b ) { (y 1+ab>(

and similar for region B

a-+b

b

) ool

a(a + b)

1+ ab

)

1+ ab
a

)
) v

3‘]

28



Results: 7hrust Maruae (i) = 00 = K = 247

- We use SecDec to calculate the double emission contribution. To obtain the renormalized soft
function we have to add the counterterms, which are known analytically at the required order.

- We show the cancellation of the divergences for thrust, setting In (u7) — 0

2 -9 —6
) _ O () 0 5.07333 x 10 1.07523 x 10 .0000102661
Sren (47’(‘)2 {CACF A 3 + 2 + .
1.40667 x 1078  6.83778 x 10~8  1.44697 x 10~® .
+ CFTFTLf (— 3 + = _ - )} 4+ S(()Q)

- We thus also have an indication of our numerical precision...

- For the finite portion, we find (setting again In (u7) — 0 ):

5 — %W (4g 704502 — 56.4992C4Cr + 43.3902CF Trm )

- Versus the analytic expression calculated by Kelley, Schabinger, Schwartz, Zhu | 1105.3676 (see also
Monni, Gehrmann, Luisoni / 1105.4560):

_ 2
59 = B 48 704502 — 56.4990C4C + 43.3905CH Tion )




Results: C-parameter

C-parameter measurement function:

ki kY
kY + kL

Me(w, {ki}) =0(w =)

7

)

For C-parameter, we obtain:

_ 2
39 = B 5 4116902 — 57.9754C4C + 43.8179C K Timy)

Where Hoang, Kolodrubetz, Mateu, Stewart | 1411.6633 extracted (using EVENT2) the following:

2

582 = O(‘j;;) ((5.41162) C% — (58.16 £ .26) CrCa + (43.74 £ .06) CpTrny)

We find similar numerical precision in the subtractions.
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Results: Angularities

- Angularities measurement function:

B 1-A/2 , A/2
Mang(w, {ki}) = 6w — E I k7

2,

A2 ;1-A/2
— Yk k;
ieR VT LT )

- The two-loop soft anomalous dimension is not known. We define in Laplace space:

_ AT cysp In (u7) — 2v5] S(7)

19 -

18 -

17

16 -

00 01 02 03 04 o5 00 01 02 03 04 o5



Results: Angularities

1-A/2 ; A/2 A/2 ;1-A/2
Mang(@, {ki}) = 6(w = Sk K2 = S 1)

—60
0
—80
—-90
—100

—110 |
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Results: 7hreshold Drell- Yan

Drell-Yan production @ threshold:

Mpy (w, {ki}) = 6(w -2 k. + k%)

For Drell-Yan, we obtain:

5 2
§® _ ag (1)

(47)°
- Whereas analytic expression calculated by Belitsky / 9808389 is:
~(2) 042(#) 2
Sy = — (5.41162CF + 6.81287C'4CF — 10.6857C’FTan)

Again, similar precision found for pole cancellation.
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Results: W/H @ large pr

With two beams and one recoiling jet the soft function depends on two initial state
(1,2) and one final state (J) Wilson lines:

S(w) =) d(w—ny-px) (X]515255|0)
X

- However, due to rescaling invariance of light-cone vectors and colour conservation,
the diagrams that contribute @ NNLO only involve attachments to the initial state
Wilson Lines S and S..

- Hence, up to NNLO, we encounter the same dijet matrix element as before.

- However, there is also now an angular dependence in the measurement function,
giving six-dimensional integrals...

34



Results: W/H @ large pr

- WJ/H production @ large pr:

My (w, {ki}) = 6(w = Y (ki + k; — 2k cos6;))

(

- We have similar color structures with the following definitions:

_ Cp—Cy/2 qq — g
i Ca/2 q9 — q and gg — ¢

- For W/H production @ large pr, we obtain:

_ 2
§@ = %W g 20a5¢2 4 [ 107.12— 11140 = —4.98 | CuC, — 25.2824 Cyn s T
(4ﬂT)2 —— N~

bare ren

«  Whereas Becher, Bell, Marti / 1201.5572 calculate:

3 2
S5 — (()‘4;’3 (48.7045C2 — 2.6501C 4 C; — 25.3073Csn ;Tr)
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Conclusions and future work

- SCET provides an efficient, analytic approach to high-order resummations necessary for
precision collider physics.

- We have presented an automated algorithm to compute dijet soft functions for a
wide class of observables in SCET

Our master formulas coupled with SecDec can quickly and easily produce predictions
for a wide class of SCET] soft functions at one and two-loops.

- This is an important ingredient for NNLL resummations in SCET...

- Next steps: Better understanding of the numerics, SCETy observables, n-jet soft functions and
a public code...

Thanks!
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