A. Kiryunin

Combined Testbeam of EMEC/HEC/FCal: Some Results

HEC meeting at MPI 14-th of October, 2008

Reconstruction and Analysis

Reconstruction at RZG

- ATHENA release 12.0.6
- Standard set of packages and tools
- Energy scans with electrons and charged pions at the standard impact point D
- Cone algorithm
- Electromagnetic scale

Analysis at MPI

- Single runs and combined runs with the same beam energy
- Reconstructed energy distributions: Gaussian fit in the certain interval \rightarrow E_0 and σ
- Energy response E_0/E_{BEAM} and resolution σ/E_0 , three term parametrisation:

$$A/\sqrt{E_{BEAM}} \oplus B \oplus C/E_{BEAM}$$

- Noise in clusters
- Resolution after noise subtraction, two term parametrisation:

$$A/\sqrt{E_{BEAM}} \oplus B$$

Charged Pion Results

- Six beam energies: from 10 to 200 GeV
- 36 runs
- Cone radius R = 0.5

Charged pions

Energy distributions

October 14, 2008

HEC meeting at MPI

Charged pions

Positively charged hadrons

- 40 and 60 GeV beams
- Trigger bit "CEDAR 6 of 8 segments":
 - 0 protons
 - 1 charged pions

Charged pions

Response and Resolution: Different CEDAR triggers

- Smooth behaviour of the response for pion triggers
- No dependence on the trigger for the energy resolution σ/E_0

Charged pions

Response and Resolution: Combined runs and Single runs

Noise in Clusters

Database noise

- noise in an event = $\sqrt{\Sigma \sigma_i^2}$
- σ_i noise RMS from database for cell *i* (for the corresponding gain)
- sum over cluster cells in a physics event
- resulting noise in a run = average over all physics events

Random noise

- noise in an event $= \Sigma S_i$
- S_i signal in cell *i* in a random event (for the default gain)
- sum over cluster cells as in a physics event
- resulting noise in a run = σ of a Gaussian fit to the obtained distribution (loops over random events)

Cluster noise

Corrected random noise

- noise in an event $= \Sigma S_i C_i$
- C_i correction factor = ratio between noise RMS for the medium and noise RMS for the high gain (from database)
- sum over cluster cells as in a physics event
- resulting noise in a run = σ of a Gaussian fit to the obtained distribution (loops over random events)
- gain corrections affect only EMEC cells

Charged pions

Noise in pion clusters

- Random noise and corrected random noise are very close
- Database noise is significantly smaller than random noise

Charged pions

Energy resolution after Noise subtraction

Energy dependence of the resolution is much better described by the two-term formula after random noise subtraction than after database noise subtraction

Electron Results

- Six beam energies: from 6 to 193 GeV
- 18 runs
- Cone radius R = 0.2

Electrons

Energy distributions

Electrons

Response and Resolution: Combined runs and Single runs

October 14, 2008

Electrons

Noise in electron clusters

- Medium gain noise brings problems in database noise
- Corrected random noise is larger than random noise

Electrons

Energy resolution after Noise subtraction

- Energy dependence of the resolution is best described by the two-term formula after random noise subtraction
- Subtraction of database noise and corrected random noise leads to poor description of the energy resolution

Some Conclusions and Plans

- Analysis of testbeam data raises some questions:
 - quality of database noise in general and medium gain noise in particular
 - reconstruction of 40 GeV charged pions
 - energy resolution for 10 GeV electrons after noise subtraction
- Next steps:
 - switch to ATHENA release 14.2.21
 - use topological cluster reconstruction and local hadron calibration

