
The SegmentNetworkProducerModule - a
draft for discussion

Preliminary draft!
Do not circulate!

Jakob Lettenbichler

June 12, 2015

Contents

1 Introduction 3
1.1 Overall picture . 3
1.2 Motivation . 6

1.2.1 Why one should use multi-hit-segments 8
1.2.2 Why we didn’t . 9

2 Associated Classes 10
2.1 DirectedNodeNetwork . 10

2.1.1 DirectedNode . 11
2.1.2 DirectedNodeNetwork . 13

2.2 ActiveSector . 20
2.3 TrackNode . 22
2.4 Segment . 25

3 SegmentNetworkProducerModule 29
3.1 Overview . 29
3.2 Pseudo-implementation . 30

3.2.1 Section - matchSpacePointToSectors(...): 30
3.2.2 Section - buildActiveSectorNetwork(...): 31
3.2.3 Section - segFinder/buildTrackNodeNetwork(...): 33
3.2.4 Section - nbFinder/buildSegmentNetwork(...): 34
3.2.5 Additional Classes and Helper-functions: 37

3.3 Use cases: . 37
3.4 Wrap up: . 39

2

Future state of the trackFinderVXD-approach (event-part)

KF (genFit)

CA

CKF

SpacePointTrackCand

Hopfield

Greedy

repeat with
different settings

light blue box: module
green-ish box: remark

red box: TF steps
Grey-ish box: est. time needed

text w/o box: interface-container

Share principle of
SecMap & Segments

TEL
Clusterizer

SVD
Clusterizer

PXD
Clusterizer

SpacePoint
Creator

PXD

SpacePoint
Creator

SVD

SpacePoint
Creator

TEL

Clusters of detector type
SpacePoint

Independent from
Detector type

Orange box:
Responsibility of detector groups

Violet box:
Responsibility of tracking group

Segment-
Network-
Producer

Step 1: TF
preparation

Step 2:
actual TF

Step 3:
Quality

Estimator

Step 4:
find clean

subset

SegmentNetwork

Referee

Step 5:
reserve

hits

1-2 weeksCircleFit

1-3 weeks

1 week

1-2 weeks

3-4 months

2-4 weeks

LineFit

DAF (genFit)

SPTC-
Network-
Producer

HelixFit

1-2 months

2-3 weeks

1-2 weeks

Other
Modules:

SPTCNetwork

TFAnalizer

GfTC->SPTC
converter

SPTC->GfTC
converter

1-3 months
done

done

done

done
 *

25%

done

done

45%

done
 *

*: by Thomas Madlener

opti
onal

Opti
onal

(tes
tbea

m)

done

Random
done

Figure 1.1

1 Introduction

1.1 Overall picture

Figure 1.1 shows the current state (as of May 2015) of the redesign-process.
Next proposed steps are:

• done: SPTCNetworkProducer

• done: QualityEstimatorRandom

• done: TrackSetEvaluatorGreedy

• done: TrackSetEvaluatorHopfield

• FilterCalculator/SecMapTrainerBase (- 50% done)

– add newFilters, remaster as much as possible without breaking the interface
to the FilterCalculatorModule which will still be used for the old VXDTF

– fork, newModule: SecMapTrainerBase

3

1.1. OVERALL PICTURE

– change to support for new SectorMap

– estimation: 2-4 weeks

• ExportSecMap/RawSecMapMerger (- 0% done)

– fork newModule: RawSecMapMerger

– implement new SectorMap-design (2-, 3- & 4-hit maps)

– merge raw files

– take care of RAM-consumption (depending on Thomas Madleners future plans
and design of SectorMap)

– estimation: 2-4 weeks

• SectorMapTuner (runOnly - 0% done)

– load static SectorMap from root file

– apply tuning parameters

– make the map accessible on StoreArray

– estimation: 1-2 weeks

• SegmentNetworkProducer (- 45% done) ← I am here

– access SectorMap on StoreArray

– add virtual interaction point and find sectors for given SpacePoints → if
found: TrackNodes ↔ SpacePoints

– find compatible sectors

– apply segFinder-Filters → segments connecting TrackNodes

– apply nbFinder-Filters → friends connecting segments

– store SegmentNetwork to StoreArray

– estimation: 2-4 weeks

• TrackFinderVXDCelloMat (- 0% done)

– encapsulate old algorithm

– load SegmentNetwork

– apply cellular automaton on network (interface to be designed)

– collect TCs as SpacePointTrackCands

– calculate seed and store SPTCs on StoreArray

– estimation: 1-2 weeks

4 Preliminary draft –- do not circulate!

1.1. OVERALL PICTURE

• QualityEstimatorCircleFit (- 0% done)

– Approach A: convert interface from VXDTFTrackCanditates to SpacePointTrackCands

– estimation approach A: 1 week

– Approach B: use existing implementation from the CDC-guys

– estimation approach B: 1-3 weeks

• SpacePointReferee (- 0% done)

– best x% (parameter) of TCs reserve the SP/Clusters (parameter) for further
iterations

– not completely clear how to store relevant info (not thought about that yet in
detail)

– estimation 1-2 weeks

• TrackFinderVXDComboKalFit (- 0% done) ← Outdated? → to be decided!

– load SegmentNetwork from StoreArray

– for each allowed treeSeed, extrapolate to each sensor allowed by sectorCombi

– collect x (parameter, 1 ≤ x ≤ 5) best fits and store for further extrapolations

– final trees of SpacePointTrackCands: store best y (parameter, 1 ≤ y ≤ 5)
TCs of single trees

– on-the-fly (genFit::Track)seed-parameter estimation

– estimation 3-4 months

• QualityEstimatorKalmanFilter (- 0% done) ← Outdated? → to be decided!

– take TC and apply seed needed for fitting

– bad-ass-way: convert SpacePointTrackCands to genFit::Track before, apply
old interface

– estimation bad-ass: 1 week

– efficient-way: start with that module after finishing TrackFinderVXDComboKalFit,
use as much as possible from that module

– estimation efficient: 1 week

– correct way: make genfit compatible (how?), new interface to be written

– estimation correct: 3+ weeks

• QualityEstimatorDAF (- 0% done)

– take tree of TCs and determine the best one using DAF

5 Preliminary draft –- do not circulate!

1.2. MOTIVATION

– mostly piping into genfit

– open question is how to do the interface (synergies with TrackFinderVXDComboKalFit
and QualityEstimatorKalmanFilter apparent)

– estimation: 1-2 months

• TrackFinderVXDAnalizer, after finishing TrackSetEvaluatorModules mixed all in
between (- 25% done)

– fork, newModule: TrackFinderVXDAnalizer

– analysis module compatible with new design

– collect data from modules and store specific info to root files (eg efficiency vs
pT, acceptance rate of dist3D for good combis...)

– correct implementation:

∗ heavily depending on observers, design only fixed yet for seg- and nbFinder
(== SegmentNetworkProducerModule). completely unclear for every-
thing else

∗ problem of correctly linking data in an oo-way for not to lose info too
early

– actual implementation: on-the fly, minimal effort, only when needed

– estimation: difficult, since many unsolved questions, 4-11 weeks

Figure 1.2 shows the time consumption for different cases for different parts of the old
VXDTFmodule. It indicates that the segFinder-part of the code may be a bottleneck
especially for high occupancy cases. It is therefore important to consider this for the
SegmentNetworkProducerModule .

1.2 Motivation

The SegmentNetworkProducerModule is a central cornerstone of the architecture of the
VXD TrackFinder of the Belle2-experiment. Its task is to provide a versatile container
which can (and will) be used by completely different track finding algorithms like a
Cellular Automaton (CA), a Deterministic Annealing Filter (DAF) or a Combinatorial
Kalman Filter (CKF). The creation of the container should keep the overhead low
and has to effectively reduce the combinatorial problem omnipresent for local and semi-
local tracking algorithms. The structure of the SegmentNetworkProducerModule is
to apply filters of different complexity levels starting with so-called “one-hit-filters”,
which will be discussed briefly in one of the following paragraphs. The overall design of
the SegmentNetworkProducerModule allows to apply a wide range of filters, which are

6 Preliminary draft –- do not circulate!

1.2. MOTIVATION

SV
Dn

oB
G

m
ed

ia
n

SV
Dn

oB
G

m
ea

n

SV
Dw

ith
BG

 m
ed

ia
n

SV
Dw

ith
BG

 m
ea

n

VX
Dn

oB
G

m
ed

ia
n

VX
Dn

oB
G

m
ea

n

VX
Ds

m
al

lB
G

m
ed

ia
n

VX
Ds

m
al

lB
G

m
ea

n

VX
Df

ul
lB

G
m

ed
ia

n
VX

Df
ul

lB
G

m
ea

n

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Ti
m

e
co

ns
um

pt
io

n
no

rm
al

iz
ed

 to
 1

Time consumption of each relevant part of the TF - normalized to 1 (median vs mean)

hitSorting
segFinder
nbFinder
CA
tcCollector
tcFilter
checkOverlap
Hopfield
other

Figure 1.2

all accessed using unified interfaces. The access to the filters used is provided by the
sectorMap and allows the utilization of purely geometrical filters like Distance3D or more
sophisticated ones like fully trained neural networks. The output will be a network which
links hits or a chain of hits called segments. These networks contain a fair number of
directed graphs linking segments which can be used by the tracking algorithms mentioned
above.

One hit filters are filters which can be applied on single hits and are therefore very
good for reducing combinatorics since the total combinatorial problem is dominated by
the possible number of combination of useful hits. Therefore these filters are the earliest
possible point where filtering makes sense (this is of course a simplified view since the
digitizers, clusterizers and cluster-combiners already filter their input too). In our case
these filters are applied by finding the correct sector for a given hit. This step scales
linearly with the number of hits and is therefore no bottleneck for the combinatorial
problem. The basic idea is to have a previously trained sectorMap which stores the

7 Preliminary draft –- do not circulate!

1.2. MOTIVATION

geometrical compatibility of neighbouring sectors, which are a subdivision of sensors
of the tracking detector. This network of sectors therefore dictates which hits can be
combined since only neighbouring sectors are allowed to be tested for compatible hits
later-on. This results in 3 different cases possible for a hit after this filter stage:

1. There was no compatible sector found for given hit: hit is neglected

2. There was a compatible sector, but that sector has no hits in its compatible
neighbours: hit is neglected

3. There was a compatible sector and at least one of its neighboring sectors got hits
too: hit is accepted.

Using an approach where no sectorMap is included, this would mean that one has to
combine each hit with any other hit “near” of him (e.g neighboring layers, the same layers
if overlapping parts exist or even next-to-neighboring layers if one has to consider broken
sensors). Even if the tests for a pair of hits are fast (like Distance3D), the combinatorial
issue grows with the second power of the number of hits and therefore can be a bottleneck
for reconstruction.

1.2.1 Why one should use multi-hit-segments

In the last few years the CA as a main driver behind the segment-idea evolved in manifold
directions. One of the major developments was to introduce segments containing more
than the classical “two-hit-segments” introduced by Kisel (Cite here). This is an important
step to allow more fine-grained filtering of bad combinations of segments. The reason for
that is that two-hit-segments in the CA-concept form neighborhoods with other two-hit-
segments, which are then filtered by filters using the 3 hits of two neighboring segments
(two neighboring segments share one hit). This means that the most complex filters one
can apply can not use more information provided as of those 3 hits. A typical example
for such a filter is Angle3D. Filters using 4 or more hits can be applied on 3 connected
segments, but the Information can not be stored when staying at the two-hit-segment
level since two pairs of connected segments - which share the middle segment - can
both be valid neighbours but the overall combination could be invalid when applying
a 4-hit-filter like zigzag. This information of the “neighbour of my neighbour” can not
preserved this way. Of course one could start collecting all valid paths through that
network and then apply these more sophisticated filters later-on, but in that case paths
would be collected which would not survive that step. Depending on the occupancy of
the events and therefore the combinatorial issue, this would mean a lot of needless work.
Therefore using 3-hit-segments would allow to map the results of 4-hit-filters and longer
segments could accept even better filters (starting with about 4 hits (3 hits are sufficient,
but allow only one degree of freedom), the Kalman filter would be one of these filters.

8 Preliminary draft –- do not circulate!

1.2. MOTIVATION

For cases when there are no full hits (consisting of a 2D-pixel or two 1D-strips combined)
available, this problem is even more severe, since then even comparably simple filters run
into that problem.

1.2.2 Why we didn’t

Although the internal design of the SegmentNetworkProducerModule supports multi-
hit-segments. They are not used in the end. Several reasons contributed to this decision:

• The more hits used per segment, the more layers needed for that step. It is clear
that one can not build 10-hit-segments when having only 3 layers and therefore
simply not enough hits for such segments. Belle2 can provide on-line-information
of the SVD, which has 4 layers of double-sided strip-sensors.

• The longer the segments, the more difficult it gets to deal with non-standard cases.
Of course having 4 layers and expecting to have 4 hit-track-candidates strongly
support using 4-hit-segments, since that would provide completely drafted paths
which are easily collected as trackCandidates without further steps. But having
the possibility of missing hits, broken sensors or simply two hits in one layer due
to the overlapping parts means that one can have tracks with 3-8 hits in our 4
layer-system. Requesting longer segments would automatically filter those shorter
stubs. Although one could work with bypasses, this would increase again the
amount of work and would minimize the boosting effect of multi-hit-segments.

• Next to these theoretical issues mentioned above, the hardest support for our
decision can be seen in Figure 1.2, which clearly states that the process of finding
pairs of hits (→ segments) is for high occupancy cases dominating and therefore
the time gain of higher order filters comparatively small. Therefore one should
invest the effort needed for implementing multi-hit-cells into improved pre-selection
via one- and two-hit-filters.

9 Preliminary draft –- do not circulate!

2 Associated Classes

2.1 DirectedNodeNetwork

The heart of the SegmentNetworkProducerModule is a container which stores the network
in an easy-to-use and efficient way. The elements of the network are called DirectedNode
which are linked to other DirectedNodes. These nodes are templated and have only
some very loose restrictions to the objects stored in them:

1. The stored class of template EntryType has to have an == operator defined

2. All nodes of the network store the same EntryType

Which effectively means that practically any class can be used to be stored as nodes in
the DirectedNodeNetwork. The prerequisites for the DirectedNodeNetwork itself are
the following:

1. All nodes store the same EntryType and links can not carry any extra information
(except the direction: inner and outer).

2. DirectedNodes can not be deactivated afterwards and links not deleted (changes
afterwards are not needed for the SegmentNetworkProducerModule and would
only complicate things).

3. Can be walked through in a directed way (each DirectedNode knows its inner and
outer partners) or in an undirected way.

4. Inner and outer end-points of the networks are always automatically updated when
filling the network.

5. There are three different ways to add nodes to the network:

a) Add a pair of nodes, where one is the outer and one is the inner node. Links
are established in both directions.

b) Add another inner node to the last outer node passed.

c) Add another outer node to the last inner node passed.

6. there can not be any nodes in the network which have no links at all.

10

2.1. DIRECTEDNODENETWORK

7. Adding (and linking) the same pair of entries twice results in a warning.

8. The user has to take care of the lifetime of objects to be linked in the network since
it only stores a reference of the objects passed.

Of the 3 ways to add Nodes, the latter two are there only to speed up the interface, since
adding pairs of nodes all the time would lead to the situation that nodes will be re-added
several times.

The code for the DirectedNodeNetwork consists of two Classes. One is the DirectedNode,
which handles the storing and access of the carried object and keeps track of its inner
and outer neighbours. The other one is the DirectedNodeNetwork itself, which adds,
stores and connects all the nodes and keeps track of the inner and outer ends of the
network. The code for that is mostly done (tests should be written for some of the most
important member functions) and covers all the features needed. The comments in the
code describe in detail what is happening there.

2.1.1 DirectedNode

The following code snippet describes the DirectedNode.
Its full implementation can be found in r18777 in:

../tracking/trackFindingVXD/segmentNetwork/include/DirectedNodeNetwork.h.
1 #include <framework/logging/Logger.h>
2 #include <vector >
3

4 /** the node -class.
5 * carries an instance of a class which shall be woven into a network. */
6 template <class EntryType >
7 class DirectedNode {
8

9 /** only the network can create DirectedNodes and link them: */
10 friend class DirectedNodeNetwork;
11

12 protected:
13 /** ************************* DATA MEMBERS */
14

15 /** entry can be of any type , DirectedNode is just the carrier */
16 EntryType& m_entry;
17

18 /** carries all links to inner nodes */
19 std::vector <DirectedNode <EntryType >*> m_innerNodes;
20

21 /** carries all links to outer nodes */
22 std::vector <DirectedNode <EntryType >*> m_outerNodes;
23

24 /** is the index position of this node in the network */

11 Preliminary draft –- do not circulate!

2.1. DIRECTEDNODENETWORK

25 unsigned int m_index;
26

27 /** ************************* CONSTRUCTORS */
28

29 /** protected constructor. Accepts an unreplaceable entry */
30 DirectedNode(EntryType& entry , unsigned int index) :
31 m_entry(entry),
32 m_index(index) {}
33

34 /** ************************* INTERNAL MEMBER FUNCTIONS */
35

36 /** adds new links to the inward direction */
37 void addInnerNode(DirectedNode <EntryType >* newNode)
38 { m_innerNodes.push_back(newNode); }
39

40 /** adds new links to the outward direction */
41 void addOuterNode(DirectedNode <EntryType >* newNode)
42 { m_outerNodes.push_back(newNode); }
43

44 /** returns the index position of this node in the network */
45 unsigned int getIndex () const { return m_index; }
46

47 public:
48 /** ************************* OPERATORS */
49

50 /** == -operator - compares if two nodes are identical */
51 inline bool operator == (const DirectedNode& b) const
52 { return (this ->getEntry () == b.getEntry ()); }
53

54 /** != -operator - compares if two nodes are not identical */
55 inline bool operator != (const DirectedNode& b) const
56 { return !(this ->getEntry () == b.getEntry ()); }
57

58 /** == -operator.
59 * true if entry passed is identical with the one
60 * linked in this node */
61 inline bool operator == (const EntryType& b) const
62 { return (this ->getEntry () == b); }
63

64 /** == -operator.
65 * true if entry passed is not identical with the one
66 * linked in this node */
67 inline bool operator != (const EntryType& b) const
68 { return !(this ->getEntry () == b); }
69

70 /** ************************* PUBLIC MEMBER FUNCTIONS */
71

72 /** returns links to all inner nodes attached to this one */

12 Preliminary draft –- do not circulate!

2.1. DIRECTEDNODENETWORK

73 std::vector <DirectedNode <EntryType >*>& getInnerNodes ()
74 { return m_innerNodes; }
75

76 /** returns links to all outer nodes attached to this one */
77 std::vector <DirectedNode <EntryType >*>& getOuterNodes ()
78 { return m_outerNodes; }
79

80 /** allows access to stored entry */
81 EntryType& getEntry () { return m_entry; }
82

83 /** allows access to stored entry */
84 EntryType* getEntry () { return &m_entry; }
85

86 /** const access to stored entry for external operator overload */
87 const EntryType& getConstEntry () const { return m_entry; }
88

89 /** returns Pointer to this node */
90 DirectedNode <EntryType >* getPtr () { return this; }
91 };

As one can see, the DirectedNode is strongly coupled with the DirectedNodeNetwork,
since the constructor is protected and setter functions too. Only the getter-functions
- allowing access to the object carried - are public and free to use for the user. The
operators are overloaded to allow directly comparing the objects carried. If an object has
already got a DirectedNode, that object will not be added again.

2.1.2 DirectedNodeNetwork

The DirectedNodeNetwork-class is more complex since it has to handle the cases if
nodes were already added. The requirements for this class is listed in 2.1, which are met
with the design listed down below. Although the main design stands, there is still room
for speed-optimization in that class. This is then a matter for forthcoming refactoring-
and optimization steps (to mention one: switch from classic to unique_ptr). Its full
implementation can be found in r18777 in:
../tracking/trackFindingVXD/segmentNetwork/include/DirectedNodeNetwork.h. Here
some of the less relevant functions are replaced by small descriptions which explain their
intended behavior. The missing code is then marked with [...].

1 #include <path/to/DirectedNode.h>
2 #include <framework/logging/Logger.h>
3 #include <vector >
4 #include <algorithm > // std::find
5

6 using namespace std , Belle2; // just for the example here
7

8 /** A network container where the nodes can carry any entryType. */

13 Preliminary draft –- do not circulate!

2.1. DIRECTEDNODENETWORK

9 template <class EntryType >
10 class DirectedNodeNetwork {
11 protected:
12 /** ************************* DATA MEMBERS */
13

14 /** carries all nodes */
15 vector <DirectedNode <EntryType >* > m_nodes;
16

17 /** temporal storage for last outer node added , used for speed -up */
18 DirectedNode <EntryType >* m_lastOuterNode;
19

20 /** temporal storage for last inner node added , used for speed -up */
21 DirectedNode <EntryType >* m_lastInnerNode;
22

23 /** keeps track of current outerEnds (nodes without outerNodes).
24 * entries are the indices of the nodes which are an outermost node */
25 vector <unsigned int > m_outerEnds;
26

27 /** keeps track of current innerEnds (nodes without innerNodes).
28 * entries are the indices of the nodes which are an innermost node */
29 vector <unsigned int > m_innerEnds;
30

31 /** ************************ INTERNAL MEMBER FUNCTIONS */
32

33 /** internal function for adding Nodes */
34 DirectedNode <EntryType >& addNode(EntryType& entry)
35 {
36 unsigned int index = m_nodes.size ();
37 m_nodes.push_back(new DirectedNode <EntryType >(entry , index));
38 return *m_nodes[index];
39 }
40

41 /** checks if given entry is already in given vector */
42 template <class T>
43 auto isInVector(T& entry , vector <T>& aVector) {[...]}
44

45 /** checks if given entry is already in the network. */
46 template <class T>
47 auto isInNetwork(T& entry) {[...]}
48

49

50 /** links nodes to each other.
51 * returns true if everything went well ,
52 * returns false , if not */
53 static bool linkNodes(
54 DirectedNode <EntryType >& outerNode ,
55 DirectedNode <EntryType >& innerNode)
56 {

14 Preliminary draft –- do not circulate!

2.1. DIRECTEDNODENETWORK

57 auto outerPos = find(
58 outerNode.getInnerNodes (). begin(),
59 outerNode.getInnerNodes ().end(),
60 &innerNode);
61 auto innerPos = find(
62 innerNode.getOuterNodes (). begin(),
63 innerNode.getOuterNodes ().end(),
64 &outerNode);
65

66 if (outerPos == outerNode.getInnerNodes (). end() or
67 innerPos == innerNode.getOuterNodes (). end()
68 { return false; }
69

70 outerNode.addInnerNode (& innerNode);
71 innerNode.addOuterNode (& outerNode);
72 return true;
73 }
74

75 /** adds newNode as a new end to the endVector
76 * and replaces old one if necessary */
77 bool updateNetworkEnd(
78 DirectedNode <EntryType >& oldNode ,
79 DirectedNode <EntryType >& newNode ,
80 vector <unsigned int > endVector)
81 {
82 auto iter = isInVector(oldNode.getIndex(), endVector);
83 if (iter != endVector.end ()) {
84 *iter = newNode.getIndex ();
85 return true;
86 }
87 endVector.push_back(newNode.getIndex ());
88 return false;
89 }
90

91 /** to a given existing node , the newEntry will be added to the network
92 * if it was not there yet and
93 * they will be linked (returning true) if they weren ’t linked yet.
94 * returns false if linking didn’t work */
95 bool addToExistingNode(
96 DirectedNode <EntryType >* existingNode ,
97 EntryType& newEntry ,
98 bool newIsInner)
99 {

100 // check if entry is already in network.
101 auto nodeIter = isInNetwork(newEntry);
102

103 DirectedNode <EntryType >* outerNode = NULL;
104 DirectedNode <EntryType >* innerNode = NULL;

15 Preliminary draft –- do not circulate!

2.1. DIRECTEDNODENETWORK

105

106 // assign nodePointers , create new nodes if needed:
107 if (newIsInner) {
108 outerNode = existingNode;
109 if (nodeIter == m_nodes.rend ()) { // new node was not in network yet
110 innerNode = &addNode(newEntry);
111

112 auto iterPos = find(m_innerEnds.begin(),
113 m_innerEnds.end(),
114 outerNode ->getIndex ());
115 if (iterPos != m_innerEnds.end ()) { *iterPos = innerNode ->getIndex (); }
116 else { m_innerEnds.push_back(innerNode ->getIndex ()); }
117 } else { // new node was not new after all:
118 innerNode = *nodeIter;
119 }
120 } else { // outerNode is new , not innerNode:
121 innerNode = existingNode;
122

123 if (nodeIter == m_nodes.rend ()) { // new node was not in network yet
124 outerNode = &addNode(newEntry);
125

126 auto iterPos = find(m_outerEnds.begin(),
127 m_outerEnds.end(),
128 innerNode ->getIndex ());
129 if (iterPos != m_outerEnds.end ()) { *iterPos = outerNode ->getIndex (); }
130 else { m_outerEnds.push_back(outerNode ->getIndex ()); }
131 } else { // outerNode is new , not innerNode:
132 outerNode = *nodeIter;
133 }
134 }
135

136 m_lastInnerNode = innerNode;
137 m_lastOuterNode = outerNode;
138 return linkNodes (*outerNode , *innerNode);
139 }
140

141 public:
142

143 /** ************************* CONSTRUCTOR/DESTRUCTOR */
144

145 /** standard constructor for ROOT IO */
146 DirectedNodeNetwork () :
147 m_lastOuterNode(NULL),
148 m_lastInnerNode(NULL) {}
149

150 /** destructor taking care of cleaning up the pointer -mess */
151 ~DirectedNodeNetwork ()
152 {

16 Preliminary draft –- do not circulate!

2.1. DIRECTEDNODENETWORK

153 for (DirectedNode <EntryType >* nodePointer : m_nodes) {
154 delete nodePointer;
155 }
156 m_nodes.clear ();
157 }
158

159 /** ************************* PUBLIC MEMBER FUNCTIONS */
160

161 /** to the last outerNode added , another innerNode will be attached */
162 void addInnerToLastOuterNode(EntryType& innerEntry)
163 { return addToExistingNode(m_lastOuterNode , innerEntry , true); }
164

165 /** to the last innerNode added , another outerNode will be attached */
166 void addOuterToLastInnerNode(EntryType& outerEntry)
167 { return addToExistingNode(m_lastInnerNode , outerEntry , false); }
168

169 /** takes two entries and weaves them into the network */
170 void linkTheseEntries(EntryType& outerEntry , EntryType& innerEntry)
171 {
172 // check if entries are already in network.
173 auto outerNodeIter = isInVector(outerEntry , m_nodes);
174 auto innerNodeIter = isInVector(outerEntry , m_nodes);
175

176 /* case 1: none of the entries are added yet:
177 * create nodes for both and link with each other ,
178 * where outerEntry will be carried by outer node
179 * and inner entry by inner node
180 * outerNode will be added to outerEnds ,
181 * and innerNode will be added to innerEnds. */
182 if (outerNodeIter == m_nodes.rend() and
183 innerNodeIter == m_nodes.rend ()) {
184 DirectedNode <EntryType >& newOuterNode = addNode(outerEntry);
185 DirectedNode <EntryType >& newInnerNode = addNode(innerEntry);
186

187 linkNodes(newOuterNode , newInnerNode);
188 m_lastInnerNode = &newInnerNode;
189 m_lastOuterNode = &newOuterNode;
190

191 m_outerEnds.push_back(newOuterNode.getIndex ());
192 m_innerEnds.push_back(newInnerNode.getIndex ());
193 return;
194 }
195

196 /* case 2: the outerEntry was already in the network ,
197 * but not innerEntry:
198 * add new node(innerEntry) to network
199 * add innerNode to existing outerNode
200 * add innerNode to innerEnds ,

17 Preliminary draft –- do not circulate!

2.1. DIRECTEDNODENETWORK

201 * if outerNode was in innerEnds before ,
202 * replace old one with new innerNode. */
203 if (outerNodeIter != m_nodes.rend() and
204 innerNodeIter == m_nodes.rend ()) {
205 DirectedNode <EntryType >& outerNode = ** outerNodeIter;
206 DirectedNode <EntryType >& newInnerNode = addNode(innerEntry);
207

208 linkNodes(outerNode , newInnerNode);
209 m_lastInnerNode = &newInnerNode;
210 m_lastOuterNode = &newOuterNode;
211

212 updateNetworkEnd(outerNode , newInnerNode , m_innerEnds);
213

214 return;
215 }
216

217 /* case 3: outerNode was not there yet , but innerEntry was:
218 * add new node(outerEntry) to network
219 * add outerNode to existing innerNode
220 * add outerNode to outerEnds , if innerNode was in outerEnds before ,
221 * replace old one with new outerNode */
222 if (outerNodeIter == m_nodes.rend() and
223 innerNodeIter != m_nodes.rend ()) {
224 DirectedNode <EntryType >& newOuterNode = addNode(outerEntry);
225 DirectedNode <EntryType >& innerNode = *innerNodeIter;
226

227 linkNodes(newOuterNode , innerNode);
228 m_lastInnerNode = &newInnerNode;
229 m_lastOuterNode = &newOuterNode;
230

231 updateNetworkEnd(innerNode , newOuterNode , m_outerEnds);
232

233 return;
234 }
235

236 /** case 4: both are already in the network ... */
237 DirectedNode <EntryType >& outerNode = ** outerNodeIter;
238 bool wasInnermostNode =
239 (outerNode.getInnerNodes (). empty ()) ? true : false;
240 DirectedNode <EntryType >& innerNode = ** innerNodeIter;
241 bool wasOutermostNode =
242 (innerNode.getOuterNodes (). empty ()) ? true : false;
243

244 bool wasSuccessful = linkNodes(outerNode , innerNode);
245

246 /* case 4A: ... but were not linked to each other yet:
247 * add innerNode to existing outerNode
248 * add outerNode to existing innerNode

18 Preliminary draft –- do not circulate!

2.1. DIRECTEDNODENETWORK

249 * if innerNode was in outerEnds before ,
250 * replace old one with new outerNode
251 * if outerNode was in innerEnds before ,
252 * replace old one with new innerNode */
253 if (wasSuccessful) {
254 updateNetworkEnd(outerNode , newInnerNode , m_innerEnds);
255 updateNetworkEnd(innerNode , newOuterNode , m_outerEnds);
256

257 return;
258 }
259

260 /** case 4B: both are already there and already linked: */
261 B2ERROR("outerEntry␣and␣innerEntry␣were␣already␣in␣the␣network␣"<<
262 "␣and␣were␣already␣connected!")
263 }
264

265 /** returns all nodes which have no outer nodes (but inner ones)
266 * and therefore are outer ends of the network */
267 vector <DirectedNode <EntryType >*> getOuterEnds () {[...]}
268

269 /** returns all nodes which have no inner nodes (but outer ones)
270 * and therefore are inner ends of the network */
271 vector <DirectedNode <EntryType >*> getInnerEnds () {[...]}
272

273 /** returns pointer to the node with given entry. Returns NULL if not found */
274 DirectedNode <EntryType >* getNode(EntryType& toBeFound) {[...]}
275

276 /** returns pointer to the node with given index. Returns NULL if not found */
277 DirectedNode <EntryType >* getNodeWithIndex(unsigned int index) {[...]}
278

279 /** returns pointer to the last outer node added. */
280 DirectedNode <EntryType >* getLastOuterNode () { return m_lastOuterNode; }
281

282 /** returns pointer to the last inner node added. */
283 DirectedNode <EntryType >* getLastInnerNode () { return m_lastInnerNode; }
284

285 /** returns all nodes of the network */
286 vector <DirectedNode <EntryType > >& getNodes () { return m_nodes; }
287

288 /** returns number of nodes to be found in the network */
289 unsigned int size() const { return m_nodes.size (); }
290 };

The design of the SegmentNetworkProducerModule creates networks in a directed way
when using pairs of nodes-to-be for combining. That approach leads to some unnecessary
temporay recreations of DirectedNodes when nodes become linked to several other nodes.
This is a possible downside which should be worked on, if upcoming studies show a relevant
fraction of double- and multi-creations of the same nodes. Another issue might be the fact

19 Preliminary draft –- do not circulate!

2.2. ACTIVESECTOR

that the actual network is searched pretty often when adding new nodes. This should also
be addressed if that design turns out to be a bottle-neck in the reconstruction-process.
The draft of the upper DirectedNodeNetwork is now designed in a way that it can (and
will) be used on various locations in the draft of the SegmentNetworkProducerModule .
A simplified code of the SegmentNetworkProducerModule can be found in chapter 3.

2.2 ActiveSector

Stores a pointer to sector in SectorMap and will be the interface to everything which is
SectorMap-related.
Its full implementation can be found in r18777 in:

../tracking/trackFindingVXD/segmentNetwork/include/ActiveSector.h.
1 #include <tracking/dataobjects/FullSecID.h>
2 #include <vector >
3

4 /** The ActiveSector Class.
5 * associated with static sector to be able to access filter cutoffs.
6 * Contains a vector with associated hits
7 * Allows to determine related inner sectors. */
8 template <class StaticSectorType , class HitType >
9 class ActiveSector {

10 protected:
11 /** ************************* DATA MEMBERS */
12

13 /** Pointer to real sector after design of SectorMap */
14 const StaticSectorType* m_staticSector;
15

16 /** stores indices of all associated Hits */
17 std::vector <HitType*> m_hits;
18

19 public:
20 /** ************************* CONSTRUCTORS */
21

22 /** Default constructor for root compatibility */
23 ActiveSector (): m_staticSector(NULL) {}
24

25 /** Constructor.
26 * staticSector: pointer to static sector associated with this one. */
27 ActiveSector(const StaticSectorType* staticSector):
28 m_staticSector(staticSector) {}
29

30 /** ************************* OPERATORS */
31

32 /** overloaded ’==’-operator for sorting algorithms */
33 bool operator ==(const ActiveSector& b) const

20 Preliminary draft –- do not circulate!

2.2. ACTIVESECTOR

34 { return (getFullSecID () == b.getFullSecID ()); }
35

36 /** overloaded ’<’-operator for sorting algorithms */
37 bool operator <(const ActiveSector& b) const
38 { return (getFullSecID () < b.getFullSecID ()); }
39

40 /** overloaded ’>’-operator for sorting algorithms */
41 bool operator >(const ActiveSector& b) const
42 { return (getFullSecID () > b.getFullSecID ()); }
43

44 /** ************************* PUBLIC MEMBER FUNCIONS */
45

46 /** returns all pointers to attached Hits */
47 inline const std::vector <HitType*>& getHits () const
48 { return m_hits; }
49

50 /** returns all IDs for inner sectors stored in the static SectorMap */
51 inline const std::vector <FullSecID ::BaseType >& getInnerSecIDs () const
52 { return m_staticSector ->getInnerSecIDs (); }
53

54 /** returns pointer to associated static Sector in StoreArray */
55 inline const StaticSectorType* getAttachedStaticSector () const
56 { return m_staticSector; }
57

58 /** returns VxdID of sensor carrying current sector */
59 inline FullSecID :: BaseType getFullSecID () const
60 { return m_staticSector ->getFullSecID (); }
61

62 /** for pair of Hits , apply filters of staticSector ,
63 * returns true if accepted */
64 bool acceptTwoHitCombination(
65 FullSecID secID ,
66 HitType& outerHit ,
67 HitType& innerHit)
68 { return m_staticSector ->accept(secID , outerHit , innerHit); }
69

70 /** for triple of Hits , apply filters of staticSector ,
71 * returns true if accepted */
72 bool acceptThreeHitCombination(
73 FullSecID centerSecID ,
74 FullSecID innerSecID ,
75 HitType& outerHit ,
76 HitType& centerHit ,
77 HitType& innerHit)
78 { return m_staticSector ->accept(
79 centerSecID ,
80 innerSecID ,
81 outerHit ,

21 Preliminary draft –- do not circulate!

2.3. TRACKNODE

82 centerHit ,
83 innerHit); }
84

85 /** adds new Hit to vector of Hits */
86 inline void addHit(HitType* newNode)
87 { m_hits.push_back(newNode); }
88 };

The class is very simple and just allows interfacing with the static sector. All functions
addressing the static sector are currently dummy functions, to be able to sketch the
member functions needed to be implemented in the static sector. Its task is to allow
access to the static sector, which does not change during runtime when a SpacePoint
can be applied to it. The ActiveSector does only live for the current event while the
StaticSector is meant for storing static info like the filters for sector-combinations and
their cuts. The ActiveSector on the other hand collects the hits found for it and allows
accessing them too.

2.3 TrackNode

The issue about the necessity of TrackNodes has been discussed at several meetings
(one important mail is the one with header: Re: SectorMap from 2015-04-14 sent by
jakob.lettenbichler@oeaw.ac.at). Now it becomes clear again that no final decision could
be made so far. As a reminder, the following section restates what has been noted at the
mail mentioned above.

[...]
As a consequence, there is no 1-1 correspondence between SpacePoints and
VXDTFHits:

• there are cases when SpacePoints are created, but no VXDTFHit: e.g.
the SpacePoint does not lie in a valid sector (e.g. low momentum pass), or
when former passes have reserved a certain cluster or cluster-combination.

• there are cases when VXDTFHits are created, but no SpacePoints: e.g.
virtual interaction point, for each valid cluster-combi, nSpacePoints ==
1, but nVXDTFHits <= nPasses. Relations between storeArray-objects
(which are an approach proposed by Martin Heck last autumn in Pisa) can
not completely cover tasks formerly fulfilled by the VXDTFHit, since that
interface is not designed for efficiently switching on and off of relations.

[...]

The design presented in this document reduces the need of a special TrackNode-class
since old essential things like the connection to other hits are now stored by the

22 Preliminary draft –- do not circulate!

2.3. TRACKNODE

DirectedNodeNetwork and the definition of overlapping TCs is now handled in a different
way and independently implemented in the SPTCNetworkProducerModule. Still the issue
needs to be resolved since a SpacePoint can not know which active-sector it is attached
to. The other main issue is the treatment of the virtual interaction point (VIP). This
means that there are two options with their individual advantages and downsides:

1. Do not introduce an extra class for the TrackNodes, but use SpacePoints instead.

This has the advantage, that the code can be kept shorter and no extra implemen-
tations are needed. The downside on the oder hand is that the hit for the IP does
not fit to the other SpacePoints in various aspects:

• It is not associated to a detector (SpacePoint::m_sensorType = ?, maybe
Const::IR?).

• It does not lie on a sensor (SpacePoint::m_vxdID = ?, maybe 0?).

• It has therefore got no local coordinates (SpacePoint::m_normalizedLocal =
?, maybe {0, 0}?).

• There is no constructor allowing to set all variables needed for a virtual interac-
tion point (e.g. SpacePoint::m_position and SpacePoint::m_clustersAssigned)
when there is no XYZCluster given. When adding such a constructor, its only
purpose would be to construct a SpacePoint to be used as virtual IP, which
seems a bit ill-designed.

• How to store it? Since it is not of the same detector type as the others, a
StoreArray just for the hit of the virtual IP would have to be used so the
modules can access it like the other SpacePoints.

The second (and more severe) downside is the storing of the sector-link to a
SpacePoint. While this is no problem for building SpacePointNetworks, since
ActiveSectorNetworks are used as a starting point, the issue becomes apparent
when building SegmentNetworks: the SpacePoint have no Active- or StaticSector-
Information and therefore have lost their information. This could be solved using
relations between StaticSectors and SpacePoints, but that could not be tested so
far.

2. Introduce an extra class TrackNode.

Advantage is that many of these issues mentioned above can be encapsulated in
the TrackNode-class, but it would mean that another layer of abstraction has to be
introduced just for virtual IPs (and the Sector-information) again. Storing would be
solved by keeping the info directly in the output of the SegmentNetworkProducerModule
.

23 Preliminary draft –- do not circulate!

2.3. TRACKNODE

The VIP and the sector-issue have lead to a simplistic solution for the TrackNodes,
which an be found in r18777 in:
../tracking/trackFindingVXD/segmentNetwork/include/TrackNode.h.

1 #include <path/to// SpacePoint.h>
2 #include <path/to// StaticSector.h>
3 #include <path/to// ActiveSector.h>
4

5 /** Store combination of sector and spacePoint ,
6 * since SpacePoint can not carry sectorConnection */
7 struct TrackNode {
8 /** pointer to sector */
9 ActiveSector <StaticSector , TrackNode >* sector;

10

11 /** pointer to spacePoint */
12 SpacePoint* spacePoint;
13

14 /** overloaded ’==’-operator */
15 bool operator ==(const TrackNode& b) const
16 {
17 // simple case: no null -ptrs interfering:
18 if (spacePoint != NULL and
19 b.spacePoint != NULL and
20 sector != NULL and
21 b.sector != NULL) {
22 // compares objects:
23 return (* spacePoint == *(b.spacePoint)) and
24 (* sector == *(b.sector));
25 }
26

27 /// case: at least one of the 2 nodes has no null -ptrs:
28 // means that this Node has no null -Ptrs -> the other one has:
29 if (spacePoint != NULL and sector != NULL) return false;
30

31 // means that the other Node has no null -Ptrs -> this one has:
32 if (b.spacePoint != NULL and b.sector != NULL) return false;
33

34 // case: both nodes have got at least one null -ptr:
35 bool spacePointsAreEqual = false;
36 if (spacePoint != NULL and b.spacePoint != NULL) {
37 spacePointsAreEqual = (* spacePoint == *(b.spacePoint));
38 } else {
39 spacePointsAreEqual = (spacePoint == b.spacePoint);
40 }
41 bool sectorsAreEqual = false;
42 if (sector != NULL and b.sector != NULL) {
43 sectorsAreEqual = (* sector == *(b.sector));
44 } else {
45 sectorsAreEqual = (sector == b.sector);

24 Preliminary draft –- do not circulate!

2.4. SEGMENT

46 }
47 return (spacePointsAreEqual == true and sectorsAreEqual == true);
48 }
49

50 /** overloaded ’!=’-operator */
51 bool operator !=(const TrackNode& b) const { return !(* this == b); }
52

53 /** constructor */
54 TrackNode () : sector(NULL), spacePoint(NULL) {}
55 };

That simplistic approach listed above is used in the design of the SegmentNetworkProducerModule
to keep the sector-information at hand.

2.4 Segment

Stores a pointer to the TrackNodes used and has extra data members: bool isAlive,
unsigned int state, bool isSeed.
Its full implementation can be found in r18777 in:

../tracking/trackFindingVXD/segmentNetwork/include/Segment.h.
1 #include <tracking/dataobjects/FullSecID.h>
2 #include <framework/logging/Logger.h>
3 #include <vector >
4

5 /** The Segment class.
6 * Represents segments of TCs needed for TrackFinderVXD -Modules */
7 template <class HitType >
8 class Segment {
9 protected:

10 /** ************************* DATA MEMBERS */
11

12 /** pointer to hit forming the outer end of the Segment. */
13 HitType* m_outerHit;
14

15 /** pointer to hit forming the inner end of the Segment. */
16 HitType* m_innerHit;
17

18 /** iD of sector carrying outer hit */
19 FullSecID :: BaseType m_outerSector;
20

21 /** iD of sector carrying inner hit */
22 FullSecID :: BaseType m_innerSector;
23

24 /** state of Segment during CA process , begins with 0 */
25 unsigned int m_state;
26

25 Preliminary draft –- do not circulate!

2.4. SEGMENT

27 /** activation state.
28 * Living Cells (active) are allowed to evolve in the CA,
29 * dead ones (inactive) are not allowed */
30 bool m_activated;
31

32 /** sets flag whether or not Segment is allowed to increase state
33 * during update step within CA */
34 bool m_stateUpgrade;
35

36 /** sets flag whether or not Segment is allowed to be the seed
37 * of a new track candidate or not */
38 bool m_seed;
39

40 public:
41 /** ************************* CONSTRUCTORS */
42

43 /** Default constructor for the ROOT IO. */
44 Segment ():
45 m_outerHit(NULL),
46 m_innerHit(NULL),
47 m_outerSector(FullSecID ()),
48 m_innerSector(FullSecID ()),
49 m_state (0),
50 m_activated(true),
51 m_stateUpgrade(false),
52 m_seed(true) {}
53

54 /** Constructor.
55 * outerSector: secID of outer Sector associated with this segment.
56 * innerSector: secID of inner Sector associated with this segment.
57 * outerNode: pointer to outer Hit associated with this segment.
58 * innerNode: pointer to inner Hit associated with this segment. */
59 Segment(
60 FullSecID :: BaseType outerSector ,
61 FullSecID :: BaseType innerSector ,
62 HitType* outerNode ,
63 HitType* innerNode):
64 m_outerHit(outerNode),
65 m_innerHit(innerNode),
66 m_outerSector(outerSector),
67 m_innerSector(innerSector),
68 m_state (0),
69 m_activated(true),
70 m_stateUpgrade(false),
71 m_seed(true) {}
72

73 /** ************************* PUBLIC MEMBER FUNCIONS */
74 // getters:

26 Preliminary draft –- do not circulate!

2.4. SEGMENT

75

76 /** CA -feature: returns state of Segment */
77 inline int getState () const
78 { return m_state; }
79

80 /** CA -feature: returns activationState */
81 inline bool isActivated () const
82 { return m_activated; }
83

84 /** CA -feature: returns info whether stateIncrease is allowed or not */
85 inline bool isUpgradeAllowed () const
86 { return m_stateUpgrade; }
87

88 /** returns whether Segment is allowed to be a seed for TCs */
89 inline bool isSeed () const
90 { return m_seed; }
91

92 /** returns inner hit of current Segment */
93 inline const HitType* getInnerHit () const
94 { return m_innerHit; }
95

96 /** returns outer hit of current Segment */
97 inline const HitType* getOuterHit () const
98 { return m_outerHit; }
99

100 /** returns inner secID of current Segment */
101 inline FullSecID :: BaseType getInnerSecID () const
102 { return m_innerSector; }
103

104 /** returns outer secID of current Segment */
105 inline FullSecID :: BaseType* getOuterSecID () const
106 { return m_outerSector; }
107

108 // setters:
109

110 /** CA -feature: increases state during CA update step */
111 inline void increaseState ()
112 { m_state ++; }
113

114 /** CA -feature:
115 * if true , Segment is allowed to increase state during update step ,
116 * if false , not allowed */
117 inline void setStateUpgrade(bool up)
118 { m_stateUpgrade = up; }
119

120 /** if true , Segment is allowed to be the seed for a new TC ,
121 * if false , not allowed */
122 inline void setSeed(bool isSeed)

27 Preliminary draft –- do not circulate!

2.4. SEGMENT

123 { m_seed = isSeed; }
124

125 /** if true , Segment is active = takes part during current CA iteration
126 * if false: Segment is inactive = does not take part , it is ’dead’ */
127 inline void setActivationState(bool activationState)
128 { m_activated = activationState; }
129 };

The Segment-class is pretty simple too and mainly consists of some getters and setters.
This design is meant for two-hit-segments only (see 1.2 and its subsections for more details),
but a multi-hit-variant would still be compatible with the DirectedNodeNetwork-design
and an implementation would be straight forward.

28 Preliminary draft –- do not circulate!

3 SegmentNetworkProducerModule

3.1 Overview

Input: What is needed to run the SegmentNetworkProducerModule :

• SpacePoints

• SectorMap

Internal classes used: Which classes are relevant here:

• DirectedNodeNetwork - defined and discussed in chapter 2.1

• ActiveSector - defined and discussed in chapter 2.2

• TrackNode - defined and discussed in chapter 2.3

• Segment - defined and discussed in chapter 2.4

Main steps: The SegmentNetworkProducerModule has the following main steps which
will be described in more detail in chapter 3.2:

• matchSpacePointToSectors(...) - for each SpacePoint given, find according
sector and store them in a fast and intermediate way.

• buildActiveSectorNetwork(...) - build a DirectedNodeNetwork<ActiveSector>,
where all ActiveSectors are stored which have TrackNodes and compatible inner-
or outer neighbours.

• segFinder/buildTrackNodeNetwork(...) - use TrackNodes stored in ActiveSectors
to build TrackNodes which will stored and linked in a DirectedNodeNetwork<TrackNode>.

• nbFinder/buildSegmentNetwork(...) - use connected TrackNodes to form seg-
ments which will stored and linked in a DirectedNodeNetwork<Segment>.

• storeToStoreObjPtr(...) - fill output format.

29

3.2. PSEUDO-IMPLEMENTATION

Output: of the SegmentNetworkProducerModule :

• A StoreArray-container StoreObjPtr<DirectedNodeNetworkContainer>, which
contains the networks mentioned above

The code of the SegmentNetworkProducerModule is written in in pseudo-code, which
describes the things which have to be done for each step. Comments in the code shall
help explaining some of the nontrivial parts.

3.2 Pseudo-implementation

Each event the SegmentNetworkProducerModule executes the following functions:

1 vector< RawSectorData > collectedData = matchSpacePointToSectors(); 3.2.1

2 void buildActiveSectorNetwork(collectedData); 3.2.2

3 void buildTrackNodeNetwork(); 3.2.3

4 void buildSegmentNetwork(); 3.2.4

Which store their results in a StoreObjPtr<DirectedNodeNetworkContainer>, which
carries 3 networks, the DirectedNodeNetwork<ActiveSector>, DirectedNodeNetwork<TrackNode>
and the DirectedNodeNetwork<Segment>. In the code descriptions of the following sec-
tions, that StoreObjPtr is called m_network.

3.2.1 Section - matchSpacePointToSectors(...):

returns: vector<RawSectorData> collectedData;

1 vector < RawSectorData > collectedData;
2 // collects trackNodes in there:
3 vector <TrackNode* >& trackNodes = m_network ->accessTrackNodes ();
4

5 // match all SpacePoints with the sectors:
6 for (SpacePoint& aSP : storeArray) {
7 StaticSector* sectorFound = findSectorForSpacePoint(aSP);
8

9 if (sectorFound == NULL) {
10 B2WARNING("SpacePoint␣discarded!"); continue; }
11

12 // sector for SpacePoint exists:
13 FullSecID foundSecID = sectorFound ->getFullSecID ();
14

15 trackNodes.push_back(new TrackNode (&aSP);
16

30 Preliminary draft –- do not circulate!

3.2. PSEUDO-IMPLEMENTATION

17 vector <RawSectorData >:: iterator iter =
18 find_if(
19 collectedData.begin(),
20 collectedData.end(),
21 [&](const RawSectorData & entry) -> bool
22 { return entry.secID == foundSecID; }
23);
24

25 // if secID not in collectedData:
26 if (iter == collectedData.end ()) {
27 collectedData.push_back(
28 { foundSecID , false , NULL , sectorFound , {trackNode }});
29 } else {
30 iter ->hits.push_back(trackNode);
31 }
32 } // loop over SpacePoints in StoreArray
33

34 // store IP -coordinates
35 if (m_PARAMAddVirtualIP == true) {
36 m_network ->setVirtualInteractionPoint ();
37 TrackNode* vIP = m_network ->getVirtualInteractionPoint ();
38 StaticSector* sectorFound = findSectorForSpacePoint (*vIP ->spacePoint);
39 collectedData.push_back(
40 {FullSecID (), false , NULL , sectorFound , {vIP }});
41 }
42 return move(collectedData);

Description: The function findSectorForSpacePoint(SpacePoint aSP) is discussed
in 3.2.5. After executing the function matchSpacePointToSectors(...), we have got
all secIDs, which are relevant for this SectorMap and event and for each of them, their
SpacePoints are collected and wrapped into TrackNodes. SpacePoints where no valid
sector was found (relevant e.g. for low momentum passes which do not use all layers),
are neglected during this step.

3.2.2 Section - buildActiveSectorNetwork(...):

→ Building our first network.

returns: void (but creates DirectedNodeNetwork<ActiveSector>
1 DirectedNodeNetwork <ActiveSector >& activeSectorNetwork = m_network ->accessActiveSectorNetwork ();
2 // collects ActiveSectors in there:
3 vector <ActiveSector *>& activeSectors = m_network ->accessActiveSectors ();
4

5 for (RawSectorData& outerSectorData : collectedData) {
6 ActiveSector* outerSector = new ActiveSector

31 Preliminary draft –- do not circulate!

3.2. PSEUDO-IMPLEMENTATION

7 (outerSectorData.staticSector);
8

9 // find innerSectors of outerSector and add them to the network:
10 const std::vector <FullSecID >& innerSecIDs = outerSector ->getInnerSecIDs ();
11

12 // skip double -adding of nodes into the network after first iteration
13 bool isFirstIteration = true;
14 for (const FullSecID innerSecID : innerSecIDs) {
15 vector <RawSectorData >:: iterator pos =
16 std:: find_if(
17 collectedData.begin(),
18 collectedData.end(),
19 [&](const RawSectorData & entry) -> bool
20 { return (entry.wasCreated == false) and
21 (entry.secID == innerSecID); }
22);
23

24 // current inner sector has no SpacePoints in this event:
25 if (pos == collectedData.end ()) { continue; }
26

27 // take care of inner sector first:
28 ActiveSector* innerSector = NULL;
29 if (pos ->wasCreated) { // was already there
30 innerSector = pos ->sector;
31 } else {
32 innerSector = new ActiveSector(pos ->staticSector);
33 pos ->wasCreated = true;
34 pos ->sector = innerSector;
35 for (auto* hit : pos ->hits) { hit ->sector = innerSector; }
36 // add all SpacePoints of this sector to ActiveSector:
37 innerSector ->addHits(pos ->hits);
38 activeSectors.push_back(innerSector);
39 }
40

41 // when accepting combination the first time , take care of outer sector:
42 if (isFirstIteration) {
43 outerSectorData.wasCreated = true;
44 outerSectorData.sector = outerSector;
45 for (auto* hit : outerSectorData.hits) { hit ->sector = outerSector; }
46 // add all SpacePoints of this sector to ActiveSector:
47 outerSector ->addHits(outerSectorData.hits);
48 activeSectors.push_back(outerSector);
49

50 activeSectorNetwork.linkTheseEntries (* outerSector , *innerSector);
51 isFirstIteration = false;
52 continue;
53 }
54 activeSectorNetwork.addInnerToLastOuterNode (* innerSector);

32 Preliminary draft –- do not circulate!

3.2. PSEUDO-IMPLEMENTATION

55 } // inner sector loop
56

57 // discard outerSector if no valid innerSector could be found
58 if (isFirstIteration == false) { delete outerSector; }
59 } // outer sector loop

Description: now we have got a network with all ActiveSectors which actually
had any compatible ActiveSectors. All ActiveSectors which had TrackNodess but
no compatible other ActiveSectors with TrackNodess this event, are stored. This
consequently means: TrackNodess without any valid partners to be combined later on
are neglected during this step. =̂ 1-hit-filter. One last comment: The ActiveSector is
actually a ActiveSector<StaticSector, TrackNode> which was omitted in the pseudo-
code above for the sake of readability.

3.2.3 Section - segFinder/buildTrackNodeNetwork(...):

→ Building our second network:

returns: void (but creates DirectedNodeNetwork<TrackNode>
There are two obvious ways to build this one : In a directed manner where sectors

= activeSectorNetwork.getOuterEnds() or in an undirected one, where sectors =
activeSectorNetwork.getNodes() will be used. Going through the DirectedNodeNetwork
in an undirected way is easier because of the fact that one does not have to care whether
or not all DirectedNodes have really been passed as intended, since all have been visited
anyway. The downside is that there could be cases that the same TrackNode will be
added more than once. This is captured by the design of the DirectedNodeNetwork and
therefore will not lead to unintended behavior, but the issue of the possible overhead
remains and has to be studied in more detail, before deciding if refactoring that part is
needed. Since that implementation is a bit tricky, the undirected approach has been used
for now, since the code is pretty simple for that one.

1 DirectedNodeNetwork <ActiveSector >& activeSectorNetwork =
2 m_network ->accessActiveSectorNetwork ();
3 // collects TrackNodes in there:
4 DirectedNodeNetwork <TrackNode >& hitNetwork =
5 m_network ->accessHitNetwork ();
6

7 // loop over outer sectors to get ->outerHits and inner sectors
8 for (auto* outerSector : activeSectorNetwork.getNodes ()) {
9 if (outerSector ->getInnerNodes (). empty ()) continue;

10

11 vector <TrackNode*>& outerHits = outerSector ->getEntry (). getHits ();
12 if (outerHits.empty ()) continue;

33 Preliminary draft –- do not circulate!

3.2. PSEUDO-IMPLEMENTATION

13

14 // loop over inner sectors to get ->innerHits and do compatibility -check
15 for (auto* innerSector : outerSector ->getInnerNodes ()) {
16 vector <TrackNode*>& innerHits = innerSector ->getEntry (). getHits ();
17 if (innerHits.empty ()) continue;
18

19 for (TrackNode* outerHit : outerHits) {
20 // skip double -adding of nodes into the network after first iteration
21 bool isFirstIteration = true;
22 for (TrackNode* innerHit : innerHits) {
23 // applying filters provided by the sectorMap:
24 bool accepted =
25 outerSector ->getEntry (). acceptTwoHitCombination(
26 innerSector ->getEntry (). getFullSecID (),
27 *outerHit ,
28 *innerHit);
29

30 // skip combinations which weren’t accepted:
31 if (accepted == false) continue;
32

33 // store combination of hits in network:
34 if (isFirstIteration) {
35 hitNetwork.linkTheseEntries (*outerHit , *innerHit);
36 isFirstIteration = false;
37 continue;
38 }
39 hitNetwork.addInnerToLastOuterNode (* innerHit);
40 } // inner hit loop
41 } // outer hit loop
42 } // inner sector loop
43 } // outer sector loop

Description: Now we got a network, where each TrackNode carries a single TrackNode
each and the links between the DirectedNodes are implicitly the segments - but not the
class Segment yet. Therefore the segments are there, but not visible (no extra class for
them), since their only job at the moment is to link TrackNodes. This is a reason why
the old name segFinder (although the same filters - translated into the new design -
are used) is maybe a bit misleading. To bypass this, here is a proposal for the new one:
buildTrackNodeNetwork

3.2.4 Section - nbFinder/buildSegmentNetwork(...):

→ Building our third network. Again, the design does not fully suppress the inadvertently
recreated Segments. One of the steps to counteract that downside is that segments are
created at the latest possible moment, when a compatible 3-hit-chain of hits are found,

34 Preliminary draft –- do not circulate!

3.2. PSEUDO-IMPLEMENTATION

up to two Segments are created. For the sake of readability, the Segment<TrackNode> is
like the ActiveSector reduced to Segment without the template arguments.

returns: void (but creates DirectedNodeNetwork<Segment>
1 DirectedNodeNetwork <TrackNode >& hitNetwork =
2 m_network ->accessHitNetwork ();
3 DirectedNodeNetwork <Segment >& segmentNetwork =
4 m_network ->accessSegmentNetwork ();
5 // collects Segments in there:
6 vector <Segment*>& segments = m_network ->accessSegments ();
7

8 for (auto* outerHit : hitNetwork.getNodes ()) {
9 vector <DirectedNode <TrackNode >*>& centerHits = outerHit ->getInnerNodes ();

10 if (centerHits.empty ()) continue; // go to next outerHit
11

12 for (auto* centerHit : centerHits) {
13 vector <DirectedNode <TrackNode >*>& innerHits = centerHit ->getInnerNodes ();
14 if (innerHits.empty ()) continue; // go to next centerHit
15

16 // skip double -adding of nodes into the network after first iteration
17 bool isFirstIteration = true;
18 for (auto* innerHit : innerHits) {
19

20 // applying filters provided by the sectorMap:
21 bool accepted = outerHit ->getEntry (). sector ->acceptThreeHitCombination(
22 centerHit ->getEntry (). sector ->getFullSecID (),
23 innerHit ->getEntry (). sector ->getFullSecID (),
24 outerHit ->getEntry(),
25 centerHit ->getEntry(),
26 innerHit ->getEntry ());
27

28 // skip combinations which weren’t accepted:
29 if (accepted == false) continue;
30

31 // create innerSegment first (order of storage in ’segments ’ is irrelevant):
32 Segment* innerSegment = new Segment(
33 outerHit ->getEntry (). sector ->getFullSecID (),
34 centerHit ->getEntry (). sector ->getFullSecID (),
35 &outerHit ->getEntry(),
36 ¢erHit ->getEntry ());
37 DirectedNode <Segment >* tempSegment = segmentNetwork.getNode (* innerSegment);
38 if (tempSegment == NULL) {
39 segments.push_back(innerSegment);
40 } else {
41 delete innerSegment;
42 innerSegment = &tempSegment ->getEntry ();
43 }

35 Preliminary draft –- do not circulate!

3.2. PSEUDO-IMPLEMENTATION

44

45 // store combination of hits in network:
46

47 if (isFirstIteration) {
48 // create outerSector:
49 Segment* outerSegment = new Segment(
50 outerHit ->getEntry (). sector ->getFullSecID (),
51 centerHit ->getEntry (). sector ->getFullSecID (),
52 &outerHit ->getEntry(),
53 ¢erHit ->getEntry ());
54 DirectedNode <Segment >* tempSegment = segmentNetwork.getNode (* innerSegment);
55 if (tempSegment == NULL) {
56 segments.push_back(outerSegment);
57 } else {
58 delete outerSegment;
59 outerSegment = &tempSegment ->getEntry ();
60 }
61

62 segmentNetwork.linkTheseEntries (* outerSegment , *innerSegment);
63 isFirstIteration = false;
64 continue;
65 }
66 segmentNetwork.addInnerToLastOuterNode (* innerSegment);
67 } // innerHit -loop
68 } // centerHit -loop
69 } // outerHit -loop

Description: Now we got a network, where Segments form the nodes and the links
between them are implicitly that what we called neighbours so far. If we had more
time, one could use the last section as a blueprint for easily writing a recursive network-
algorithm, which simply continues sticking node-pairs of the input network into a single
node of the output network (e.g. the next step would take neighbouring segments and
would combine them to 3-hit-segments, which would then form the nodes of the new
DirectedNodeNetwork). For 4-hit filters the current implementations already have some
useful filters, but for 5- and more-hit-filters, this approach would simply say alwaysTrue,
but would still deliver automatically the longest chains. In that case one only has to
search for multi-hit-segments which are inner-and outer end at the same time and collect
them before starting the next iteration - et voilà, another tracking algorithm done. Since
there is simply not enough time for this anyway, we have to neglect that one, but it would
have been a nice (and cheaply to implement) idea...

36 Preliminary draft –- do not circulate!

3.3. USE CASES:

3.2.5 Additional Classes and Helper-functions:

As mentioned in the comments of the code above, there are some additional classes and
helper-functions included in the module, which are just mentioned briefly and in pseudo
code here to cover their intended behavior:

StaticSector* findSectorForSpacePoint(SpacePoint& aSP): This function shall
retrieve the correct sector for given SpacePoint and return a pointer to it (or NULL if no
sector found).

1 for (StaticSector& aSector : m_secMap)
2 if aSP ->getVxdID () != aSector.getVxdID () {continue ;}
3 if (aSector.getFullSecID(aSP ->getNormalizedLocalU (),
4 aSP ->getNormalizedLocalV ()) != isValid)
5 { continue ;}
6 return &aSector;
7 return NULL;

struct RawSectorData: - a simple struct to bundle raw data for a single sector before
creating the actual ActiveSectors.

1 struct RawSectorData {
2 /** secID of rawSector */
3 FullSecID secID;
4

5 /** needed for creating ActiveSectorNetwork:
6 * if yes , the sector was already added to the network */
7 bool wasCreated;
8

9 /** stores a sector if one is found , NULL else */
10 ActiveSector <StaticSector , TrackNode >* sector;
11

12 /** stores a static sector */
13 StaticSector* staticSector;
14

15 /** collects the hits found on this sector */
16 std::vector <Belle2 :: TrackNode*> hits;
17 };

3.3 Use cases:

After executing the SegmentNetworkProducerModule , the output lies in the DataStore
and can be used for various purposes. Three of the most relevant ones will be listed now,
which demonstrates how the results can be processed by several tracking algorithms.

37 Preliminary draft –- do not circulate!

3.3. USE CASES:

CA: Take the segmentNetwork, loop over all nodes (which are the segments) and ask
their connected inner nodes (which are the neighbours) if they are compatible. If yes,
allow them to increase their state in the upgrade step. This is in fact a simplified sketch
of the CA-algorithm, which will not fully be described here again. After several rounds,
each segment has got its final state.
The second step in the module then will be to call a findSeeds(segmentNetwork)-

function. This function marks all segments as seeds, whose state is "high enough". All
these seeds are then allowed to be seed for a tc-collector (e.g the path finder-algorithm
from Rudi) to start collecting. The resulting bunch of TrackCands are then stored as
SpacePointTrackCands in a storeArray. Whether or not there shall be a simple QI-
calculator to be included, we have to decide later on. Alternatively all of them are set
onto a value of 0.5, but slightly smeared to suppress issues with the Hopfield Neural
Network.

CKF: Since it would take to long to fully implement an fully-grown CKF, this is a
draft for a slower - but from the result point-of-view equivalent - approach.
Short reminder: the CKF starts from a seed and goes in the direction defined by the

seed and collects the x(≤ 1) best next inner hits for extending the TC. Each of these
valid inner hits are then added to a copy of the current TC and then independently
followed on until end of road or a χ2/QI-threshold has been surpassed. In the end, for
each seed, one keeps the y(≤ 1) best TCs for further studies.

Since genFit is not really designed to allow using their algorithms in such a freely man-
ner, as would be needed for a real CKF, the implementation would take a while. Therefore
a sufficiently good approximation to the intended behavior has to be sketched, to allow a
feasible estimation whether or not implementing a real CKF could be recommended:

Start again with a findSeeds(segmentNetwork)-function. This one marks all segments
as seeds, which are outerEnds of the network. That approach would be the strictest
definition. Alternatively one could mark all segments as seeds which have a hit at layer 5
or higher, but in the end the following steps are the same, no matter how the seeds were
chosen. Again a tc-collector-algorithm will be called for each seed and the resulting
paths then converted to genFit::Tracks to be able to use the normal KF-interface used
in the old design. This would then for each seed give a bunch of TrackCandidates,
where the y best ones are kept and exported to the storeArray<SpacePointTrackCand>.
Compared to a real CKF this approach is slower, since all paths collected from a seed have
to be followed by the KF separately, which leads to several extrapolation- and update-
steps to be done several times. But compared to a classical standard KF which would
only add the best next hit to its path starting from a seed, more possible combinations
can be scanned. This should lead to a higher efficiency, even if the execution time is
relatively slow compared to a real (and optimized) CKF.

38 Preliminary draft –- do not circulate!

3.4. WRAP UP:

Thomas: to get the training data he needs for his neural networks, he can use the output
of the SegmentNetworkProducerModule too. He then simply takes the segmentNetwork
and executes another custom findSeeds(segmentNetwork)-function: This one simply
marks all segments as seeds, which are not innerEnd of the network. Then he can simply
loop over the network and collect each seed and its inner neighbours → this produces
3-hit-combinations (with the seed being the outer end of them) he needs for his training.

3.4 Wrap up:

The DirectedNodeNetwork seems to fulfill all requests asked for by the
SegmentNetworkProducerModule design described in the chapter 3.2. Its performance -
especially compared to the old design - is yet unclear but will tested thoroughly. Another
point which is not fully solved yet is the interface to the sectorMap, which still has to
be finalized. One has to consider the extra amount of work for the translation of the
neighbourFinder-filters of the old code into the new design. Here a problem could be
that the segments are not yet existing when testing for 3-hit-acceptance. The reason
why they are not existing yet, is discussed and described in 3.2.3 and in 3.2.4. Even
though the design should fulfill the expectations, the implementation and testing with
realistic imput still will need a while, especially when considering the time needed
for converting the neighbourFinder-filters too. Therefore the estimation for the time
needed for implementing all what is needed for the SegmentNetworkProducerModule
is still at least 2 weeks (without neighbourFinder-filters) and additional 2-3 weeks for
neighbourFinder-filters conversion and testing of the whole thing.

39 Preliminary draft –- do not circulate!

	Introduction
	Overall picture
	Motivation
	Why one should use multi-hit-segments
	Why we didn't

	Associated Classes
	DirectedNodeNetwork
	DirectedNode
	DirectedNodeNetwork

	ActiveSector
	TrackNode
	Segment

	SegmentNetworkProducerModule
	Overview
	Pseudo-implementation
	Section - matchSpacePointToSectors(...):
	Section - buildActiveSectorNetwork(...):
	Section - segFinder/buildTrackNodeNetwork(...):
	Section - nbFinder/buildSegmentNetwork(...):
	Additional Classes and Helper-functions:

	Use cases:
	Wrap up:

