Investigations of the Two-loop Massive Anomalous Dimension in QCD

- Master Thesis -

## Lena Funcke

Supervisor: Dr. Alexander Mitov

High Energy Physics Group, Cavendish Laboratory, University of Cambridge





#### 29th June 2015

# Table of Contents

#### 1 Introduction

#### 2 Theoretical Background

- New Calculation Method
- Matrix of Anomalous Dimensions
- Process Amplitude and Two-loop Anomalous Dimension

#### 3 Derivations

- Analytical Investigation of the Master Integral
- Numerical Evaluation and Symmetry Considerations of Process Amplitude

# Table of Contents

#### 1 Introduction

#### 2 Theoretical Background

- New Calculation Method
- Matrix of Anomalous Dimensions
- Process Amplitude and Two-loop Anomalous Dimension

#### 3 Derivations

- Analytical Investigation of the Master Integral
- Numerical Evaluation and Symmetry Considerations of Process Amplitude

# Table of Contents

#### 1 Introduction

#### 2 Theoretical Background

- New Calculation Method
- Matrix of Anomalous Dimensions
- Process Amplitude and Two-loop Anomalous Dimension

### 3 Derivations

- Analytical Investigation of the Master Integral
- Numerical Evaluation and Symmetry Considerations of Process Amplitude

# Table of Contents

#### 1 Introduction

### 2 Theoretical Background

- New Calculation Method
- Matrix of Anomalous Dimensions
- Process Amplitude and Two-loop Anomalous Dimension

### 3 Derivations

- Analytical Investigation of the Master Integral
- Numerical Evaluation and Symmetry Considerations of Process Amplitude

# Table of Contents

#### 1 Introduction

#### 2 Theoretical Background

- New Calculation Method
- Matrix of Anomalous Dimensions
- Process Amplitude and Two-loop Anomalous Dimension

#### 3 Derivations

- Analytical Investigation of the Master Integral
- Numerical Evaluation and Symmetry Considerations of Process Amplitude

# Introduction

Motivation:

- Improvement of accuracy of theoretical predictions.
- To date, amplitudes of SM processes typically determined up to Next-to-Leading-Order in perturbation theory.
- For more precise predictions, need to compute Next-to-Next-to-Leading-Order corrections.

# Introduction

Motivation:

- Improvement of accuracy of theoretical predictions.
- To date, amplitudes of SM processes typically determined up to Next-to-Leading-Order in perturbation theory.
- For more precise predictions, need to compute Next-to-Next-to-Leading-Order corrections.

# Introduction

Motivation:

- Improvement of accuracy of theoretical predictions.
- To date, amplitudes of SM processes typically determined up to Next-to-Leading-Order in perturbation theory.
- For more precise predictions, need to compute Next-to-Next-to-Leading-Order corrections.

## Introduction

- Test new method to determine low-energy contribution to second order QCD Feynman diagrams.
- Apply method to specific known amplitude.
- Compare results in specific cases to provide evidence for validity of method.
- Build on calculations conducted in previous Master thesis.

# Introduction

- Test new method to determine low-energy contribution to second order QCD Feynman diagrams.
- Apply method to specific known amplitude.
- Compare results in specific cases to provide evidence for validity of method.
- Build on calculations conducted in previous Master thesis.

# Introduction

- Test new method to determine low-energy contribution to second order QCD Feynman diagrams.
- Apply method to specific known amplitude.
- Compare results in specific cases to provide evidence for validity of method.
- Build on calculations conducted in previous Master thesis.

# Introduction

- Test new method to determine low-energy contribution to second order QCD Feynman diagrams.
- Apply method to specific known amplitude.
- Compare results in specific cases to provide evidence for validity of method.
- Build on calculations conducted in previous Master thesis.

New Calculation Method Matrix of Anomalous Dimensions Process Amplitude and Two-loop Anomalous Dimension State of the Art

# Table of Contents

## 1 Introduction

### 2 Theoretical Background

- New Calculation Method
- Matrix of Anomalous Dimensions
- Process Amplitude and Two-loop Anomalous Dimension

### 3 Derivations

- Analytical Investigation of the Master Integral
- Numerical Evaluation and Symmetry Considerations of Process Amplitude
- 4 Discussion and Conclusions

New Calculation Method Matrix of Anomalous Dimensions Process Amplitude and Two-loop Anomalous Dimension State of the Art

# New Calculation Method

## Aim: computation of infrared contribution to QCD scattering amplitudes.

- Technical subset: solution of Integration by Parts identities to reduce number and complexity of integrals involved.
- Implementation: Laporta algorithm.
- Advantages: fast and efficient reduction of integrals, plus reproduction of known results without resorting to full computation of integrals.

New Calculation Method Matrix of Anomalous Dimensions Process Amplitude and Two-loop Anomalous Dimension State of the Art

# New Calculation Method

- Aim: computation of infrared contribution to QCD scattering amplitudes.
- Technical subset: solution of Integration by Parts identities to reduce number and complexity of integrals involved.
- Implementation: Laporta algorithm.
- Advantages: fast and efficient reduction of integrals, plus reproduction of known results without resorting to full computation of integrals.

New Calculation Method Matrix of Anomalous Dimensions Process Amplitude and Two-loop Anomalous Dimension State of the Art

# New Calculation Method

- Aim: computation of infrared contribution to QCD scattering amplitudes.
- Technical subset: solution of Integration by Parts identities to reduce number and complexity of integrals involved.
- Implementation: Laporta algorithm.
- Advantages: fast and efficient reduction of integrals, plus reproduction of known results without resorting to full computation of integrals.

New Calculation Method Matrix of Anomalous Dimensions Process Amplitude and Two-loop Anomalous Dimension State of the Art

# New Calculation Method

- Aim: computation of infrared contribution to QCD scattering amplitudes.
- Technical subset: solution of Integration by Parts identities to reduce number and complexity of integrals involved.
- Implementation: Laporta algorithm.
- Advantages: fast and efficient reduction of integrals, plus reproduction of known results without resorting to full computation of integrals.

New Calculation Method Matrix of Anomalous Dimensions Process Amplitude and Two-loop Anomalous Dimension State of the Art

# Matrix of Anomalous Dimensions

- Structure of infrared poles in all orders of perturbation theory determined by matrix of anomalous dimensions.
- *i*-th order of matrix computed from coefficients of poles in dimensional regulator ε, in amplitudes of corresponding *i*-th-loop diagrams.

New Calculation Method Matrix of Anomalous Dimensions Process Amplitude and Two-loop Anomalous Dimension State of the Art

# Matrix of Anomalous Dimensions

- Structure of infrared poles in all orders of perturbation theory determined by matrix of anomalous dimensions.
- *i*-th order of matrix computed from coefficients of poles in dimensional regulator ε, in amplitudes of corresponding *i*-th-loop diagrams.

New Calculation Method Matrix of Anomalous Dimensions Process Amplitude and Two-loop Anomalous Dimension State of the Art

Process Amplitude and Two-loop Anomalous Dimension



Figure: Two-loop three-einkonal diagram [1].

- Testing new method: Investigation of known two-loop three-eikonal diagram.
- Calculation in position space.
- Integration of distance \u03c6<sub>i,j,k</sub> along each eikonal from 0 to \u03c6.
- Integration of position x of three-gluon vertex over all space.

New Calculation Method Matrix of Anomalous Dimensions Process Amplitude and Two-loop Anomalous Dimension State of the Art

Process Amplitude and Two-loop Anomalous Dimension



Figure: Two-loop three-einkonal diagram [1].

- Testing new method: Investigation of known two-loop three-eikonal diagram.
- Calculation in position space.
- Integration of distance λ<sub>i,j,k</sub> along each eikonal from 0 to ∞.
- Integration of position x of three-gluon vertex over all space.

New Calculation Method Matrix of Anomalous Dimensions Process Amplitude and Two-loop Anomalous Dimension State of the Art

Process Amplitude and Two-loop Anomalous Dimension

Amplitude of two-loop three-eikonal diagram obtained with new method [1]:

$$F_{3E}^{(2)}(m{eta}) \propto \int_0^\infty \prod_{i=1}^3 \left(rac{d\lambda_i}{\lambda_i}
ight) rac{A(\lambda_i,m{eta})}{B(\lambda_i,m{eta})} I(\lambda_i,m{eta})$$

#### In total six integrations:

- Three integrations over  $\lambda_i$ .
- Three integrations over x<sub>i</sub> replacing D-dim. integration over x: Master Integral I(λ<sub>i</sub>, β).

Introduction New Calculation Method
Theoretical Background Matrix of Anomalous Dimensions
Derivations Process Amplitude and Two-loop Anomalous Dimension
State of the Art

# State of the Art

Previous Master thesis:

- Already first trivial integration over  $\lambda_1$  gives  $\propto 1/arepsilon$ .
- Assumption:  $\varepsilon = 0$  in remaining integrals over  $\lambda_2, \lambda_3, x_i$ .

#### Goal of this project:

Proof that ε can be set to 0 in remaining integrals.

Introduction New Calculation Method
Theoretical Background Process Amplitude and Two-loop Anomalous Dimension
Discussion and Conclusions State of the Art

# State of the Art

Previous Master thesis:

- Already first trivial integration over  $\lambda_1$  gives  $\propto 1/arepsilon$ .
- Assumption:  $\varepsilon = 0$  in remaining integrals over  $\lambda_2, \lambda_3, x_i$ .

#### Goal of this project:

Proof that  $\varepsilon$  can be set to 0 in remaining integrals.

Introduction New Calculati Theoretical Background Derivations Process Ampli Discussion and Conclusions State of the A

New Calculation Method Matrix of Anomalous Dimensions Process Amplitude and Two-loop Anomalous Dimension State of the Art

# State of the Art

Previous Master thesis:

- Performed integrations over x<sub>i</sub> probably not correct.
- Integrations over  $\lambda_2, \lambda_3$  not performed.

#### Goals of this project:

- Examine feasibility of integrations (analytically & numerically).
- Evaluate specific case of equal parton momenta.

Introduction New Calculation Method
Theoretical Background Matrix of Anomalous Dimensions
Derivations Process Amplitude and Two-loop Anomalous Dimension
State of the Art

# State of the Art

Previous Master thesis:

- Performed integrations over x<sub>i</sub> probably not correct.
- Integrations over  $\lambda_2, \lambda_3$  not performed.

#### Goals of this project:

- Examine feasibility of integrations (analytically & numerically).
- Evaluate specific case of equal parton momenta.

Analytical Investigation of the Master Integral Numerical Evaluation and Symmetry Considerations of Proces

# Table of Contents

### 1 Introduction

### 2 Theoretical Background

- New Calculation Method
- Matrix of Anomalous Dimensions
- Process Amplitude and Two-loop Anomalous Dimension

## 3 Derivations

- Analytical Investigation of the Master Integral
- Numerical Evaluation and Symmetry Considerations of Process Amplitude

Analytical Investigation of the Master Integral Numerical Evaluation and Symmetry Considerations of Proces

# Solution of First Two Integrations of Master Integral

- Master Integral in Feynman parametrization consists of three integrations over x<sub>i</sub>.
- Integrations over x<sub>1</sub> and x<sub>2</sub> give rise to integrand containing hypergeometric function

$$_{2}F_{1}(1-2\varepsilon,1-2\varepsilon,2-\varepsilon;z)$$
 with  $z = z(\beta,\lambda_{i},x_{3})$ 

and prefactor

$$((1-x_3)x_3)^{-1+\varepsilon}.$$

- Third integration over x<sub>3</sub> highly non-trivial.
- Several integration approaches attempted.

# Solution of First Two Integrations of Master Integral

- Master Integral in Feynman parametrization consists of three integrations over x<sub>i</sub>.
- Integrations over x<sub>1</sub> and x<sub>2</sub> give rise to integrand containing hypergeometric function

$$_{2}F_{1}(1-2\varepsilon,1-2\varepsilon,2-\varepsilon;z)$$
 with  $z=z(eta,\lambda_{i},x_{3})$ 

and prefactor

$$((1-x_3)x_3)^{-1+\varepsilon}$$

Third integration over x<sub>3</sub> highly non-trivial.
 Several integration approaches attempted.

# Solution of First Two Integrations of Master Integral

- Master Integral in Feynman parametrization consists of three integrations over x<sub>i</sub>.
- Integrations over x<sub>1</sub> and x<sub>2</sub> give rise to integrand containing hypergeometric function

$$_{2}F_{1}(1-2\varepsilon,1-2\varepsilon,2-\varepsilon;z)$$
 with  $z=z(eta,\lambda_{i},x_{3})$ 

and prefactor

$$((1-x_3)x_3)^{-1+\varepsilon}$$

- Third integration over x<sub>3</sub> highly non-trivial.
- Several integration approaches attempted.

# Solution of First Two Integrations of Master Integral

- Master Integral in Feynman parametrization consists of three integrations over x<sub>i</sub>.
- Integrations over x<sub>1</sub> and x<sub>2</sub> give rise to integrand containing hypergeometric function

$$_{2}F_{1}(1-2\varepsilon,1-2\varepsilon,2-\varepsilon;z)$$
 with  $z=z(eta,\lambda_{i},x_{3})$ 

and prefactor

$$((1-x_3)x_3)^{-1+\varepsilon}$$

- Third integration over  $x_3$  highly non-trivial.
- Several integration approaches attempted.

Expansion of Integrand in Powers of Dimensional Regulator

Expand  $_2F_1$  in powers of  $\varepsilon$  with Mathematica package HypExp [2].

- Explicit factor  $(1 x_3)x_3$  in first order of  ${}_2F_1$  expansion cancels prefactor  $((1 x_3)x_3)^{-1+\varepsilon}$  for small  $\varepsilon$ .
- Hence no term  $\propto 1/\varepsilon$  generated by integrand  $\rightarrow$  can set  $\varepsilon =$  0.
- Master Integral is finite.
- Highly non-trivial proof, numerically checked with Monte Carlo integration as well as Mathematica package SecDec [3].

Expansion of Integrand in Powers of Dimensional Regulator

Expand  $_2F_1$  in powers of  $\varepsilon$  with Mathematica package HypExp [2].

- Explicit factor  $(1 x_3)x_3$  in first order of  ${}_2F_1$  expansion cancels prefactor  $((1 x_3)x_3)^{-1+\varepsilon}$  for small  $\varepsilon$ .
- Hence no term  $\propto 1/arepsilon$  generated by integrand  $\rightarrow$  can set arepsilon= 0.
- Master Integral is finite.
- Highly non-trivial proof, numerically checked with Monte Carlo integration as well as Mathematica package SecDec [3].

Expansion of Integrand in Powers of Dimensional Regulator

Expand  $_2F_1$  in powers of  $\varepsilon$  with Mathematica package HypExp [2].

- Explicit factor  $(1 x_3)x_3$  in first order of  ${}_2F_1$  expansion cancels prefactor  $((1 x_3)x_3)^{-1+\varepsilon}$  for small  $\varepsilon$ .
- Hence no term  $\propto 1/\varepsilon$  generated by integrand  $\rightarrow$  can set  $\varepsilon = 0$ .
- Master Integral is finite.
- Highly non-trivial proof, numerically checked with Monte Carlo integration as well as Mathematica package SecDec [3].

Analytical Investigation of the Master Integral Numerical Evaluation and Symmetry Considerations of Proces

# Final Integration over $x_3$

## Approach chosen in previous Master thesis: Split integrand into several terms and perform integrations.

- Obtain several logarithms and dilogarithms, identify denominator with polynomial  $B(\beta, \lambda_i) \rightarrow$  Huge simplification.
- Result numerically checked for specific parameter sets.
- However, for other parameter sets: result complex and only real part in accordance with numerical result.
Analytical Investigation of the Master Integral Numerical Evaluation and Symmetry Considerations of Proces

#### Final Integration over $x_3$

Approach chosen in previous Master thesis: Split integrand into several terms and perform integrations.

■ Obtain several logarithms and dilogarithms, identify denominator with polynomial B(β, λ<sub>i</sub>) → Huge simplification.

Result numerically checked for specific parameter sets.

However, for other parameter sets: result complex and only real part in accordance with numerical result.

Analytical Investigation of the Master Integral Numerical Evaluation and Symmetry Considerations of Proces

#### Final Integration over $x_3$

Approach chosen in previous Master thesis: Split integrand into several terms and perform integrations.

- Obtain several logarithms and dilogarithms, identify denominator with polynomial B(β, λ<sub>i</sub>) → Huge simplification.
- Result numerically checked for specific parameter sets.
- However, for other parameter sets: result complex and only real part in accordance with numerical result.

Analytical Investigation of the Master Integral Numerical Evaluation and Symmetry Considerations of Proces

#### Final Integration over $x_3$

Approach chosen in previous Master thesis: Split integrand into several terms and perform integrations.

- Obtain several logarithms and dilogarithms, identify denominator with polynomial  $B(\beta, \lambda_i) \rightarrow$  Huge simplification.
- Result numerically checked for specific parameter sets.
- However, for other parameter sets: result complex and only real part in accordance with numerical result.

### Final Integration over $x_3$

Mistake found in previous integration approach:

- Riemann/Lebesgue integration conditions not always fulfilled.
- Only Cauchy Principal Value exists in these cases, gives rise to terms  $\propto i\pi(1+2n)$  with  $n \in \mathbb{Z}$ .

Scattering amplitude and Master Integral have to be real [4].

- Result obtained in previous Master thesis not valid.
- Closed-form result for Master Integral probably not derivable at all with new method.

### Final Integration over $x_3$

Mistake found in previous integration approach:

- Riemann/Lebesgue integration conditions not always fulfilled.
- Only Cauchy Principal Value exists in these cases, gives rise to terms  $\propto i\pi(1+2n)$  with  $n \in \mathbb{Z}$ .
- Scattering amplitude and Master Integral have to be real [4].

- Result obtained in previous Master thesis not valid.
- Closed-form result for Master Integral probably not derivable at all with new method.

### Final Integration over $x_3$

Mistake found in previous integration approach:

- Riemann/Lebesgue integration conditions not always fulfilled.
- Only Cauchy Principal Value exists in these cases, gives rise to terms  $\propto i\pi(1+2n)$  with  $n \in \mathbb{Z}$ .
- Scattering amplitude and Master Integral have to be real [4].

- Result obtained in previous Master thesis not valid.
- Closed-form result for Master Integral probably not derivable at all with new method.

### Final Integration over $x_3$

Mistake found in previous integration approach:

- Riemann/Lebesgue integration conditions not always fulfilled.
- Only Cauchy Principal Value exists in these cases, gives rise to terms  $\propto i\pi(1+2n)$  with  $n \in \mathbb{Z}$ .
- Scattering amplitude and Master Integral have to be real [4].

- Result obtained in previous Master thesis not valid.
- Closed-form result for Master Integral probably not derivable at all with new method.

Analytical Investigation of the Master Integral Numerical Evaluation and Symmetry Considerations of Proces

# Case of Equal Momenta

Case of equal parton momenta:  $\beta_i \cdot \beta_j = \beta^2$ .

- Integration without occurrence of integration conditions and imaginary parts.
- Resulting integrand simplified to expression antisymmetric in remaining integration variables  $\lambda_{2,3}$ .

Analytical Investigation of the Master Integral Numerical Evaluation and Symmetry Considerations of Proces

#### Numerical Evaluation of Process Amplitude

Case of equal parton momenta:

Integrand of process amplitude numerically integrable to 0.



Analytical Investigation of the Master Integral Numerical Evaluation and Symmetry Considerations of Proces

## Numerical Evaluation of Process Amplitude

Case of arbitrary parton momenta:

- Numerical evaluation of integrals with Quasi Monte Carlo algorithm diverges due to numerical inaccuracy.
- Reason: Singularities in prefactor A/B.



Analytical Investigation of the Master Integral Numerical Evaluation and Symmetry Considerations of Proces

# Application of Symmetry Properties of Integrand

Final approach:

- Split integrand into symmetric and antisymmetric parts under exchange of momenta.
- Final result is known to be antisymmetric in momenta.

Result:

- Symmetric part vanishes as expected.
- Integration of antisymmetric part still diverges.

Analytical Investigation of the Master Integral Numerical Evaluation and Symmetry Considerations of Proces

# Application of Symmetry Properties of Integrand

Final approach:

- Split integrand into symmetric and antisymmetric parts under exchange of momenta.
- Final result is known to be antisymmetric in momenta.

Result:

- Symmetric part vanishes as expected.
- Integration of antisymmetric part still diverges.

Analytical Investigation of the Master Integral Numerical Evaluation and Symmetry Considerations of Proces

# Application of Symmetry Properties of Integrand

For equal parton momenta:

- Antisymmetric part equals 0 for all  $\lambda_i$ .
- Symmetric part does not contribute to final result.
- Hence, process amplitude vanishes for equal momenta.
   → Coincides with analytical/numerical evaluation and theoretical expectation.

Analytical Investigation of the Master Integral Numerical Evaluation and Symmetry Considerations of Proces

Application of Symmetry Properties of Integrand

For equal parton momenta:

- Antisymmetric part equals 0 for all  $\lambda_i$ .
- Symmetric part does not contribute to final result.
- Hence, process amplitude vanishes for equal momenta.
   → Coincides with analytical/numerical evaluation and theoretical expectation.

### Table of Contents

#### 1 Introduction

#### 2 Theoretical Background

- New Calculation Method
- Matrix of Anomalous Dimensions
- Process Amplitude and Two-loop Anomalous Dimension

#### 3 Derivations

- Analytical Investigation of the Master Integral
- Numerical Evaluation and Symmetry Considerations of Process Amplitude

#### 4 Discussion and Conclusions

## **Discussion and Conclusions**

#### Analytical investigations of Master Integral:

- Proved that Master Integral is finite for all parameter sets.
- Wrong imaginary parts found in final solution of previous Master project.
- For arbitrary momenta, probably no closed-form analytical result obtainable with new method.
- For equal momenta, valid solution was obtained.

## **Discussion and Conclusions**

Analytical investigations of Master Integral:

- Proved that Master Integral is finite for all parameter sets.
- Wrong imaginary parts found in final solution of previous Master project.
- For arbitrary momenta, probably no closed-form analytical result obtainable with new method.
- For equal momenta, valid solution was obtained.

## **Discussion and Conclusions**

Analytical investigations of Master Integral:

- Proved that Master Integral is finite for all parameter sets.
- Wrong imaginary parts found in final solution of previous Master project.
- For arbitrary momenta, probably no closed-form analytical result obtainable with new method.
- For equal momenta, valid solution was obtained.

### **Discussion and Conclusions**

Numerical investigations:

- Case of arbitrary momenta:
  - Numerical integration accuracy not high enough.
  - $\blacksquare$  Pole  $\propto 1/\varepsilon$  extracted.  $\rightarrow$  Computation possible in principle.
- Case of equal momenta:
  - Amplitude vanishes, shown with two independent approaches.
  - Coincides with expectation.

### **Discussion and Conclusions**

Numerical investigations:

- Case of arbitrary momenta:
  - Numerical integration accuracy not high enough.
  - Pole  $\propto 1/arepsilon$  extracted.  $\rightarrow$  Computation possible in principle.
- Case of equal momenta:
  - Amplitude vanishes, shown with two independent approaches.
  - Coincides with expectation.

### **Discussion and Conclusions**

Applicability of new method:

- New calculation method applicable to specific cases, e.g. equal momenta or massless eikonals [1].
- In both cases reproduction of known result.
  - $\rightarrow$  Probably applicable to three-loop four-eikonal amplitude.
- In general: fast reduction of number & complexity of integrals.
   → Method very efficient and applicable to any process, hence promising for solving several undissolved problems in HEP.

### **Discussion and Conclusions**

Applicability of new method:

- New calculation method applicable to specific cases, e.g. equal momenta or massless eikonals [1].
- In both cases reproduction of known result.
  - ightarrow Probably applicable to three-loop four-eikonal amplitude.
- In general: fast reduction of number & complexity of integrals.
   → Method very efficient and applicable to any process, hence promising for solving several undissolved problems in HEP.

# References |



#### 🛸 S. De Nicola

A New Method to Compute the Infrared contribution to QCD Scattering Amplitudes.

Part III project report, Cavendish Laboratory, University of Cambridge (2014).



#### 🍉 T. Huber and D. Maitre

HypExp, a Mathematica package for expanding hypergeometric functions around integer-valued parameters. Comput.Phys.Commun. 175, 122 (2006), arXiv:hep-ph/0507094v2.

### References II



🛸 S. Borowka, G. Heinrich, S. P. Jones, M. Kerner, J. Schlenk and others SecDec-3.0: numerical evaluation of multi-scale integrals beyond one loop. Preprint (2015), arXiv:1502.06595v1.



嗪 A. Mitov, G. F. Sterman and I. Sung Computation of the Soft Anomalous Dimension Matrix in Coordinate Space. Phys.Rev. D82, 034020 (2010), arXiv:1005.4646v1.



Do you have any questions?





The New Method [1]

 The two-loop three-eikonal amplitude in Feynman gauge can be written as

$$\mathcal{F}^{(2)}_{3E}(oldsymbol{eta}) = \int d^D x \int_0^\infty \prod_{i=1}^3 (d\lambda_i) V(x,oldsymbol{eta}).$$

The integrand is given by a sum over six terms,

$$V(x,\beta) = \sum_{i,j,k} \varepsilon_{ijk} v_{ijk}(x,\beta).$$

The New Method [1]

The integrand is given by a sum over six terms,

$$V(x,eta) = \sum_{i,j,k} \varepsilon_{ijk} v_{ijk}(x,eta).$$

Here it was defined

$$\mathsf{v}_{ijk} = -i(g\varepsilon)^4 eta_i \cdot eta_j \Delta(x - \lambda_j eta_j) \Delta(x - \lambda_k eta_k) eta_k \cdot \partial_x \Delta(x - \lambda_i eta_i).$$

The propagators are given by

$$\Delta(x-\lambda_ieta_i)=-rac{\Gamma(1-arepsilon)}{4\pi^{2-arepsilon}}rac{1}{(x-\lambda_ieta_i)^{2(1-arepsilon)}}.$$

# The New Method [1]

۱

•  $v_{ijk}$  can be expressed as a linear comb. of Feynman integrals,

$$egin{split} & \mathcal{I}(0,2-arepsilon,1-arepsilon,1-arepsilon) \ & -I(-1,2-arepsilon,1-arepsilon)+I(0,2-arepsilon,1-arepsilon,0-arepsilon) \end{split}$$

Feynman integrals are defined as

$$I(a_1,...,a_n) := \int ... \int \prod_i (d^D k_i) \frac{1}{E_1^{a_1}(\boldsymbol{k},\boldsymbol{p})... E_n^{a_n}(\boldsymbol{k},\boldsymbol{p})}$$

where  $\boldsymbol{k}$  and  $\boldsymbol{p}$  are called internal and external momenta in analogy with momentum-space integrals.

$$lacksquare$$
 The propagators are  $E_0=x^2$  and  $E_i=(x-\lambda_ieta_i)^2$  .

# The New Method [1]

 Reduce linear combination of Feynman integrals (FI) by using Integration By Parts identities:

$$0 = \int \dots \int \prod_{i} (d^{D} k_{i}) \frac{\partial}{\partial k^{\mu}} \frac{\eta^{\mu}}{E_{1}^{a_{1}} \dots E_{n}^{a_{n}}}$$

where  $\eta$  can take values  $\{k_1, ...\}$ .

- Using these relations, express given FI as linear combination of simpler FIs.
- Method of reduction: Laporta algorithm, solves a system of IBPs by carrying out Gaussian elimination.

# The New Method [1]

- Program AIR (Automatic Integral Reduction) implements Laporta algorithm. Propagators need to have integer powers.
- However, only relative difference between powers of propagators relevant for reduction.
- Hence one can shift the powers a<sub>i</sub> → a<sub>i</sub> ε.
   → For reduction one shifts powers, i.e. temporarily sets ε = 0, and re-introduces ε at later stage.

Result:

 Reduction of initially 12 integrals to single Master Integral I(0, 1, 1, 1).

The New Method [1]

#### Remember Feynman integral notation

$$I(a_1,...,a_n) := \int ... \int \prod_i (d^D k_i) \frac{1}{E_1^{a_1}(\boldsymbol{k},\boldsymbol{p}) ... E_n^{a_n}(\boldsymbol{k},\boldsymbol{p})}$$

where k := x and  $p = \beta$ .

Reduction with AIR to single Master Integral

$$I(0,1,1,1) = \int d^{D}x \frac{1}{[(x-\gamma_{1})^{2}]^{(1-\varepsilon)}[(x-\gamma_{2})^{2}]^{(1-\varepsilon)}[(x-\gamma_{3})^{2}]^{(1-\varepsilon)}}$$

### Master Integral in Feynman Parametrization

Starting point: single Master Integral

$$I(0,1,1,1) = \int d^D x \frac{1}{[(x-\gamma_1)^2]^{(1-\varepsilon)}[(x-\gamma_2)^2]^{(1-\varepsilon)}[(x-\gamma_3)^2]^{(1-\varepsilon)}}.$$

Integral written in Feynman parametrization

$$\propto \int_0^1 \int_0^1 \int_0^1 dx_1 dx_2 dx_3 \frac{\delta(1-x_1-x_2-x_3)(x_1x_2x_3)^{(-\varepsilon)}}{(x_1x_2\sigma_{12}+x_2x_3\sigma_{23}+x_3x_1\sigma_{31})^{(1-2\varepsilon)}}$$

with

$$\sigma_{ij} := (\gamma_i - \gamma_j)^2$$
$$\gamma_i := \lambda_i \beta_i.$$

Solution of First Two Integrations

Master Integral after  $x_1$  integration

$$\propto \int_0^1 \int_0^1 dx_2 dx_3 (1-x_2) (x_2 x_3 (1-x_2)(1-x_3))^{(-arepsilon)} \ \cdot [x_2 x_3 (1-x_2) \sigma_{12} + x_3 (1-x_2)^2 (1-x_3) \sigma_{23} \ + (1-x_2) (1-x_3) x_2 \sigma_{31}]^{(-1+2arepsilon)}.$$

Master Integral after  $x_2$  integration

$$\propto rac{1}{\sigma_{23}}\int_0^1 dx_3 \left((1-x_3)x_3
ight)^{-1+arepsilon_2} \widetilde{F}_1(1-2arepsilon,1-2arepsilon,2-arepsilon;z),$$

with argument z defined as

$$z := 1 - rac{1}{\sigma_{23}} \left( rac{\sigma_{12}}{1 - x_3} + rac{\sigma_{13}}{x_3} 
ight).$$

## Expansion of Integrand in Powers of $\varepsilon$

First order of expansion of hypergeometric function in powers of  $\boldsymbol{\varepsilon}$  is

$${}_{2}F_{1}(1-2\varepsilon,1-2\varepsilon,2-\varepsilon;z) \approx -\frac{\ln(1-z)}{z}$$
$$\approx \frac{(1-x_{3})x_{3}}{-x_{3}(1-x_{3})+\frac{1}{\sigma_{23}}(x_{3}\sigma_{12}+(1-x_{3})\sigma_{13})} \ln \left[\frac{\sigma_{12}x_{3}+\sigma_{13}(1-x_{3})}{\sigma_{23}(1-x_{3})x_{3}}\right]$$

Expansion of prefactor  $((1-x_3)x_3)^{-1+arepsilon}$  in powers of arepsilon done with

$$\xi^{-1+\varepsilon} = \frac{1}{\varepsilon}\delta(\xi) + \sum_{n=0}^{\infty} \frac{\varepsilon^n}{n!} \left[\frac{\ln^n(\xi)}{\xi}\right]_+,$$

where plus prescription  $[f(x)]_+$  defined via

$$\int_0^1 dx [f(x)]_+ g(x) = \int_0^1 dx f(x) (g(x) - g(0)).$$

# Third Integration

#### Final expression for Master Integral

$$I(0,1,1,1) = \frac{\pi^2}{\sigma_{23}} \int_0^1 dx_3 \frac{\ln\left[\frac{\sigma_{12}x_3 + \sigma_{13}(1-x_3)}{\sigma_{23}(1-x_3)x_3}\right]}{-x_3(1-x_3) + \frac{1}{\sigma_{23}}(x_3\sigma_{12} + (1-x_3)\sigma_{13})}.$$

Approach in previous Master thesis: Split logarithm into

$$\ln(\sigma_{12}x_3 + \sigma_{13}(1 - x_3)) - \ln(1 - x_3) - \ln(x_3) - \ln(\sigma_{23}),$$

integrate over  $x_3$  and obtain (wrong complex) result consisting of logarithms and dilogarithms.
# Case of Equal Momenta

Master Integral for equal momenta

$$I(0,1,1,1) = \pi^2 \int_0^1 dx_3 \; \frac{\ln\left[\frac{\sigma_{12}x_3 + \sigma_{13}(1-x_3)}{\sigma_{23}(1-x_3)x_3}\right]}{\sigma_{23}(x_3 - x_0)^2},$$

with double zero of denominator

$$x_0 := rac{\lambda_1 - \lambda_3}{\lambda_2 - \lambda_3}.$$

Integral after  $x_3$  integration

$$-\frac{\ln[(1-\lambda_2)^2]}{(\lambda_2-\lambda_3)(-1+\lambda_3)}+\frac{\ln[(1-\lambda_3)^2]}{(\lambda_2-\lambda_3)(-1+\lambda_2)}+\frac{\ln[(\lambda_2-\lambda_3)^2]}{(-1+\lambda_2)(-1+\lambda_3)}.$$

## Case of Equal Momenta

Integrand of process amplitude with  $\lambda_1=1$  and  $m^2=1$  and for equal momenta

$$\begin{aligned} \frac{1}{\lambda_2 \lambda_3} \frac{A(\gamma)}{B(\gamma)} I(0, 1, 1, 1) &= \frac{3\pi^2}{2(\lambda_3^2 - \lambda_2 \lambda_3 (1 + \lambda_3) + \lambda_2^2 (1 - \lambda_3 + \lambda_3^2))} \\ &\cdot \left\{ + (1 - \lambda_2) \cdot \ln[(1 - \lambda_2)^2] \right. \\ &- (1 - \lambda_3) \cdot \ln[(1 - \lambda_3)^2] \\ &+ (\lambda_2 - \lambda_3) \cdot \ln[(\lambda_2 - \lambda_3)^2] \right\}. \end{aligned}$$

# Application of Symmetry Properties of Integrand

#### Master Integral after $x_1$ integration

$$\propto \int_0^1 \int_0^1 dx_2 dx_3 \ [x_2 x_3 \sigma_{12} + x_3 (1 - x_2)(1 - x_3) \sigma_{23} + (1 - x_3) x_2 \sigma_{31}]^{-1}$$

with  $\sigma_{ij} := (\gamma_i - \gamma_j)^2$  and  $\gamma_i := \lambda_i \beta_i$ .

Simulate for example exchange of  $\beta_1 \leftrightarrow \beta_2$ : Relabel  $\lambda_1 \leftrightarrow \lambda_2$  and  $(1 - x_3) \leftrightarrow x_2 x_3$ .

# Further Approaches to Solve Master Integral

Master Integral

$$I(0,1,1,1) \propto \int_0^1 dx_3 \left(x_3(1-x_3)\right)^{-1+\varepsilon} \tilde{F}_1(1-2\varepsilon,1-2\varepsilon,2-\varepsilon;z)$$

with z defined as

$$z := 1 - \frac{1}{\sigma_{23}} \left( \frac{\sigma_{12}}{1 - x_3} + \frac{\sigma_{13}}{x_3} \right).$$
(1)

Identity of hypergeometric functions

$$_{3}F_{2}(a_{1}, a_{2}, a_{3}, b_{1}, b_{2}; z) \propto \int_{0}^{1} dy(y)^{a_{3}-1}(1-y)^{-a_{3}+b_{2}-1}{}_{2}F_{1}(a_{1}, a_{2}, b_{1}; yz)$$

Definition of 
$${\it A}(\gamma)$$
 and  ${\it B}(\gamma)$ 

 $A(\gamma)$  and  $B(\gamma)$  are

$$\begin{aligned} \mathcal{A}(\gamma) &= \gamma_{12} [(v_{12}^2 + 1)\gamma_{12} - \gamma_3^2](\gamma_{23} - \gamma_{13}) \\ &+ \gamma_{13} [(v_{13}^2 + 1)\gamma_{13} - \gamma_2^2](\gamma_{12} - \gamma_{23}) \\ &+ \gamma_{23} [(v_{23}^2 + 1)\gamma_{23} - \gamma_1^2](\gamma_{13} - \gamma_{12}) \end{aligned}$$
$$\begin{aligned} \mathcal{B}(\gamma) &= -v_{12}^2 \gamma_{12}^2 - v_{13}^2 \gamma_{13}^2 - v_{23}^2 \gamma_{23}^2 \\ &+ 2\gamma_{12}(\gamma_{13} - \gamma_3^2) + 2\gamma_{13}(\gamma_{23} - \gamma_2^2) + 2\gamma_{23}(\gamma_{12} - \gamma_1^2), \end{aligned}$$

where  $\gamma_i := \lambda_i \beta_i$ ,  $\gamma_{ij} = \gamma_i \cdot \gamma_j$  and  $\gamma_{ij}^2 v_{ij}^2 = \gamma_{ij}^2 - \gamma_i^2 \gamma_j^2$ .